REGULARIZATION OF THE SOLUTION OF THE INVERSE VES PROBLEM BY THE CONTRAST STABILIZATION METHOD: TESTING THE ALGORITHM ON MODEL DATA
1 Lomonosov Moscow State University, Moscow
2 Schmidt Institute of Physics of the Earth, Russian Academy of Sciences
Journal: Science and technological developments
Tome: 101
Number: 1
Year: 2022
Pages: 5-35
UDK: 550.837.311
DOI: 10.21455/std2022.1-2
Show citation
Bobachev
A.V A.A. REGULARIZATION OF THE SOLUTION OF THE INVERSE VES PROBLEM BY THE CONTRAST STABILIZATION METHOD: TESTING THE ALGORITHM ON MODEL DATA // . 2022. Т. 101. № 1. С. 5-35. DOI: 10.21455/std2022.1-2
@article{Bobachev
A.VREGULARIZATION2022,
author = "Bobachev
A.V, A. A.",
title = "REGULARIZATION OF THE SOLUTION OF THE INVERSE VES PROBLEM BY THE CONTRAST STABILIZATION METHOD: TESTING THE ALGORITHM ON MODEL DATA ",
journal = "Science and technological developments",
year = 2022,
volume = "101",
number = "1",
pages = "5-35",
doi = "10.21455/std2022.1-2 ",
language = "English"
}
Copy link
Copy BibTex
Keywords: VES data inversion, solution regularization, contrast stabilization, algorithm testing, model series
Аnnotation: Previously, it was shown that traditional algorithms for solving the inverse VES problem do not allow achieving the accuracy required for precision monitoring of a geoelectric section, and regularized algorithms were proposed to improve the accuracy and stability of solving the inverse VES problem. In this paper, we test the resistivity contrast stabilization algorithm on synthetic data. For modeling, a geoelectric section is used, similar to the section of the Garm polygon both in terms of the set of layers and their resistivities, and in terms of the characteristics of seasonal variations, as well as noise. It is shown that the regularization of the inverse problem greatly reduces the errors. The most significant effect is achieved by suppressing the buildup of resistivity. Estimates are obtained for the accuracy of solving the inverse problem, which can be achieved when working with experimental data.
Bibliography: Bobachev, A., Ipi2win user's guide, Moscow: Moscow State University, 2002.
Bobachev, A.A., Kompleks IPI-1D – odnomernaya profil'naya interpretatsiya dannykh VEZ i VEZ-VP (IPI-1D complex – one-dimensional profile interpretation of VES and VES-VP data) [Electronic resource]. http://geoelectric.ru/ipi2win.htm (Access date: June 26, 2020)
Bobachev, A.A., Deshcherevskii, A.V., Sidorin, A.Ya., Features of instability in solving the inverse problem of vertical electrical sounding for precision monitoring, Seismic Instruments, 2021a, vol. 57, no. 3, pp. 302–320. https://doi.org/10.3103/S0747923921030038
Bobachev, A.A., Deshcherevskii, A.V., Sidorin, A.Ya., Regularization algorithms for increasing the stability of the solution to the inverse problem in precision monitoring of electrical resistivity using the VES method, Seismic Instruments, 2021b, vol. 57, no. 4, pp. 409–423. https://doi.org/10.3103/S0747923921040022
Bogdanov, M.I., Kalinin, V.V., Modin, I.N., Application of high-precision low-frequency electrical prospecting systems for long-term monitoring of hazardous geotechnical processes, Inzhenernyye izyskaniya (Engineering research), 2013, no. 10–11, pp. 110–115. [in Russian].
Deshcherevskii, A.V., Fraktal'naya razmernost', pokazatel' Khersta i ugol naklona spektra vremennogo ryada (Fractal dimension, Hurst exponent and slope of the spectrum of the time series), Moscow: OIFZ RAN, 1997, 36 p.
Deshcherevskii, A.V., Zhuravlev V.I., Testirovaniye metodiki otsenki parametrov flikker-shuma (Testing the method for estimating the parameters of flicker noise), Moscow: OIFZ RAN, 1996, 12 p.
Deshcherevskii, A.V., Sidorin, A.Ya., Nekotoryye voprosy metodiki otsenki srednesezonnykh funktsiy dlya geofizicheskikh dannykh (Some questions of the methodology for assessing the average seasonal functions for geophysical data), Moscow: OIFZ RAN, 1999, 40 p.
Deshcherevskii, A.V., Sidorin, A.Ya., Two-component model of geophysical processes: seasonal variations and flicker noise, Dokl. Akademii nauk (Dokl. Russian Academy of Sciences), 2001, vol. 376, no. 1, pp. 100–105. [in Russian].
Deshcherevskii, A.V., Sidorin, A.Ya., Seasonal variations of the apparent resistivity as a function of the sounding depth, Izvestiya, Physics of the Solid Earth, 2004, vol. 40, no. 3, pp. 177–193.
Deshcherevskii, A.V., Sidorin, A.Ya., Algorithm for adaptive estimation of time series seasonal variations: Testing using the example of CO2 concentrations in the atmosphere, Geofizicheskie Protsessy i Biosfera (Geophysical Processes and Biosphere), 2021, vol. 20, no. 4, pp. 147–174. [in Russian]. https://doi.org/10.21455/gpb2021.1-10
Deshcherevskii, A.V., Zhuravlev, V.I., Sidorin, A.Ya., Spectral-temporal features of seasonal variations in apparent resistivity, Izvestiya, Physics of the Solid Earth, 1997a, vol. 33, no. 3, pp. 217– 226.
Deshcherevskii, A.V., Lukk, A.A., Sidorin, A.Ya., Flicker-noise structure in the time realizations of geophysical fields, Izvestiya, Physics of the Solid Earth, 1997b, vol. 33, no. 7, pp. 515–529.
Deshcherevskii, A.V., Zhuravlev, V.I., Nikolsky, A.N., Sidorin, A.Ya., ABD software package: Universal tool for analysis of monitoring data, Nauka i tekhnologicheskie razrabotki (Science and Technological Developments), 2016, vol. 95, no. 4, pp. 35–48. [in Russian]. https://doi.org/10.21455/std2016.4-6
Deshcherevskii, A.V., Zhuravlev, V.I., Nikolsky, A.N., Sidorin, A.Ya., Technologies for analyzing geophysical time series: Part 1. Software requirements, Seismic Instruments, 2017a, vol. 53, no. 1, pp. 46–59. https://doi.org/10.3103/S0747923917010030
Deshcherevskii, A.V., Zhuravlev, V.I., Nikolsky, A.N., Sidorin, A.Ya., Technologies for analyzing geophysical time series: Part 2. WinABD – A software package for maintaining and analyzing geophysical monitoring data, Seismic Instruments, 2017b, vol. 53, no. 3, pp. 203–223. https://doi.org/10.3103/S0747923917030021
Deshcherevskii, A.V., Zhuravlev, V.I., Nikolsky, A.N., Sidorin, A.Ya., Problems in analyzing time series with gaps and their solution with the WinABD software package, Izvestiya, Atmospheric and Oceanic Physics, 2017c, vol. 53, no. 7, pp. 659–678. https://doi.org/10.1134/S0001433817070027
Deshcherevskii, A.V., Modin, I.N., Sidorin, A.Ya., Constructing the optimal model of the geoelectric section using vertical electrical sounding data: Case study of the central part of the Garm research area, Izvestiya, Atmospheric and Oceanic Physics, 2018a, vol. 54, no. 10, pp. 1490–1511. https://doi.org/10.1134/S0001433818100031
Deshcherevskii, A.V., Modin, I.N., Sidorin, A.Ya., Method for constructing a model of a geoelectric section taking into account seasonal variations based on data from long-term vertical electric sounding monitoring in search of earthquake precursors, Seismic Instruments, 2018b, vol. 54, no. 4, pp. 424– 436. https://doi.org/10.3103/S0747923918040023
Deshcherevskii, A.V., Modin, I.N., Sidorin, A.Ya., Seasonal variations in specific resistivity in the upper layers of the Earth crust, Seismic Instruments, 2019, vol. 55, pp. 300–312. https://doi.org/10.3103/S0747923919030058
Khmelevskoy, V.K., Shevnin, V.A. (eds.), Elektricheskoye zondirovaniye geologicheskoy sredy (Electrical sounding of the geological environment), Part 1, Moscow: Moscow State University, 1988, 176 p.
Khmelevskoy, V.K., Shevnin, V.A. (eds.), Elektricheskoye zondirovaniye geologicheskoy sredy (Electrical sounding of the geological environment), Part 2, Moscow: Moscow State University, 1992, 200 p.
Khmelevskoy, V.K., Shevnin, V.A. (eds.), Elektricheskoye zondirovaniye geologicheskoy sredy (Electrical sounding of the geological environment), Part 3, Moscow: Moscow State University, 1994, 160 p.
Lukk, A.A., Descherevsky, A.V., Sidorin, A.Ya., Sidorin, I.A., Variatsii geofizicheskikh poley kak proyavleniye determinirovannogo khaosa vo fraktal'noy srede (Variations of geophysical fields as a manifestation of deterministic chaos in a fractal environment), Moscow: OIFZ RAN, 1996, 210 p.
Ostashevsky, M.G., Sidorin, A.Ya., Apparatura dlya dinamicheskoy geoelektriki (Equipment for dynamic geoelectrics), Moscow: IFZ AN SSSR, 1990, 208 p.
Ostashevsky, M.G., Sidorin, A.Ya., Multifunctional electrical sounding station and the results of its use, in: Kompleksnye issledovaniya po prognozu zemletryasenii (Comprehensive research on earthquake prediction), ed. by M.A. Sadovsky, Moscow: Nauka, 1991, pp. 182–199.
Sidorin, A.Ya., Variations in the electrical resistivity of the upper layer of the Earth's crust, Dokl. AN SSSR (Dokl. Academy of Sciences of the USSR), 1984, vol. 278, no. 2, pp. 330–334. [in Russian].
Sidorin, A.Ya., Results of precision observations of variations in apparent resistivity at the Garm test
site, Dokl. AN SSSR (Dokl. Academy of Sciences of the USSR), 1986, vol. 290, no. 1, pp. 81–84. [in Russian].
Sidorin, A.Ya. (ed.), Garmskiy geofizicheskiy poligon (Garm geophysical test site), Moscow: Nauka, 1990, 240 p.
Sidorin, A.Ya., Predvestniki zemletryaseniy (Earthquake Precursors), Moscow: Nauka, 1992, 192 p.
Yakubovski, Yu.V., Elektrorazvedka. Uchebnik dlya vuzov (Electrical Exploration. Textbook for universities), Moscow: Nedra, 1980, 384 p.
Bobachev, A.A., Kompleks IPI-1D – odnomernaya profil'naya interpretatsiya dannykh VEZ i VEZ-VP (IPI-1D complex – one-dimensional profile interpretation of VES and VES-VP data) [Electronic resource]. http://geoelectric.ru/ipi2win.htm (Access date: June 26, 2020)
Bobachev, A.A., Deshcherevskii, A.V., Sidorin, A.Ya., Features of instability in solving the inverse problem of vertical electrical sounding for precision monitoring, Seismic Instruments, 2021a, vol. 57, no. 3, pp. 302–320. https://doi.org/10.3103/S0747923921030038
Bobachev, A.A., Deshcherevskii, A.V., Sidorin, A.Ya., Regularization algorithms for increasing the stability of the solution to the inverse problem in precision monitoring of electrical resistivity using the VES method, Seismic Instruments, 2021b, vol. 57, no. 4, pp. 409–423. https://doi.org/10.3103/S0747923921040022
Bogdanov, M.I., Kalinin, V.V., Modin, I.N., Application of high-precision low-frequency electrical prospecting systems for long-term monitoring of hazardous geotechnical processes, Inzhenernyye izyskaniya (Engineering research), 2013, no. 10–11, pp. 110–115. [in Russian].
Deshcherevskii, A.V., Fraktal'naya razmernost', pokazatel' Khersta i ugol naklona spektra vremennogo ryada (Fractal dimension, Hurst exponent and slope of the spectrum of the time series), Moscow: OIFZ RAN, 1997, 36 p.
Deshcherevskii, A.V., Zhuravlev V.I., Testirovaniye metodiki otsenki parametrov flikker-shuma (Testing the method for estimating the parameters of flicker noise), Moscow: OIFZ RAN, 1996, 12 p.
Deshcherevskii, A.V., Sidorin, A.Ya., Nekotoryye voprosy metodiki otsenki srednesezonnykh funktsiy dlya geofizicheskikh dannykh (Some questions of the methodology for assessing the average seasonal functions for geophysical data), Moscow: OIFZ RAN, 1999, 40 p.
Deshcherevskii, A.V., Sidorin, A.Ya., Two-component model of geophysical processes: seasonal variations and flicker noise, Dokl. Akademii nauk (Dokl. Russian Academy of Sciences), 2001, vol. 376, no. 1, pp. 100–105. [in Russian].
Deshcherevskii, A.V., Sidorin, A.Ya., Seasonal variations of the apparent resistivity as a function of the sounding depth, Izvestiya, Physics of the Solid Earth, 2004, vol. 40, no. 3, pp. 177–193.
Deshcherevskii, A.V., Sidorin, A.Ya., Algorithm for adaptive estimation of time series seasonal variations: Testing using the example of CO2 concentrations in the atmosphere, Geofizicheskie Protsessy i Biosfera (Geophysical Processes and Biosphere), 2021, vol. 20, no. 4, pp. 147–174. [in Russian]. https://doi.org/10.21455/gpb2021.1-10
Deshcherevskii, A.V., Zhuravlev, V.I., Sidorin, A.Ya., Spectral-temporal features of seasonal variations in apparent resistivity, Izvestiya, Physics of the Solid Earth, 1997a, vol. 33, no. 3, pp. 217– 226.
Deshcherevskii, A.V., Lukk, A.A., Sidorin, A.Ya., Flicker-noise structure in the time realizations of geophysical fields, Izvestiya, Physics of the Solid Earth, 1997b, vol. 33, no. 7, pp. 515–529.
Deshcherevskii, A.V., Zhuravlev, V.I., Nikolsky, A.N., Sidorin, A.Ya., ABD software package: Universal tool for analysis of monitoring data, Nauka i tekhnologicheskie razrabotki (Science and Technological Developments), 2016, vol. 95, no. 4, pp. 35–48. [in Russian]. https://doi.org/10.21455/std2016.4-6
Deshcherevskii, A.V., Zhuravlev, V.I., Nikolsky, A.N., Sidorin, A.Ya., Technologies for analyzing geophysical time series: Part 1. Software requirements, Seismic Instruments, 2017a, vol. 53, no. 1, pp. 46–59. https://doi.org/10.3103/S0747923917010030
Deshcherevskii, A.V., Zhuravlev, V.I., Nikolsky, A.N., Sidorin, A.Ya., Technologies for analyzing geophysical time series: Part 2. WinABD – A software package for maintaining and analyzing geophysical monitoring data, Seismic Instruments, 2017b, vol. 53, no. 3, pp. 203–223. https://doi.org/10.3103/S0747923917030021
Deshcherevskii, A.V., Zhuravlev, V.I., Nikolsky, A.N., Sidorin, A.Ya., Problems in analyzing time series with gaps and their solution with the WinABD software package, Izvestiya, Atmospheric and Oceanic Physics, 2017c, vol. 53, no. 7, pp. 659–678. https://doi.org/10.1134/S0001433817070027
Deshcherevskii, A.V., Modin, I.N., Sidorin, A.Ya., Constructing the optimal model of the geoelectric section using vertical electrical sounding data: Case study of the central part of the Garm research area, Izvestiya, Atmospheric and Oceanic Physics, 2018a, vol. 54, no. 10, pp. 1490–1511. https://doi.org/10.1134/S0001433818100031
Deshcherevskii, A.V., Modin, I.N., Sidorin, A.Ya., Method for constructing a model of a geoelectric section taking into account seasonal variations based on data from long-term vertical electric sounding monitoring in search of earthquake precursors, Seismic Instruments, 2018b, vol. 54, no. 4, pp. 424– 436. https://doi.org/10.3103/S0747923918040023
Deshcherevskii, A.V., Modin, I.N., Sidorin, A.Ya., Seasonal variations in specific resistivity in the upper layers of the Earth crust, Seismic Instruments, 2019, vol. 55, pp. 300–312. https://doi.org/10.3103/S0747923919030058
Khmelevskoy, V.K., Shevnin, V.A. (eds.), Elektricheskoye zondirovaniye geologicheskoy sredy (Electrical sounding of the geological environment), Part 1, Moscow: Moscow State University, 1988, 176 p.
Khmelevskoy, V.K., Shevnin, V.A. (eds.), Elektricheskoye zondirovaniye geologicheskoy sredy (Electrical sounding of the geological environment), Part 2, Moscow: Moscow State University, 1992, 200 p.
Khmelevskoy, V.K., Shevnin, V.A. (eds.), Elektricheskoye zondirovaniye geologicheskoy sredy (Electrical sounding of the geological environment), Part 3, Moscow: Moscow State University, 1994, 160 p.
Lukk, A.A., Descherevsky, A.V., Sidorin, A.Ya., Sidorin, I.A., Variatsii geofizicheskikh poley kak proyavleniye determinirovannogo khaosa vo fraktal'noy srede (Variations of geophysical fields as a manifestation of deterministic chaos in a fractal environment), Moscow: OIFZ RAN, 1996, 210 p.
Ostashevsky, M.G., Sidorin, A.Ya., Apparatura dlya dinamicheskoy geoelektriki (Equipment for dynamic geoelectrics), Moscow: IFZ AN SSSR, 1990, 208 p.
Ostashevsky, M.G., Sidorin, A.Ya., Multifunctional electrical sounding station and the results of its use, in: Kompleksnye issledovaniya po prognozu zemletryasenii (Comprehensive research on earthquake prediction), ed. by M.A. Sadovsky, Moscow: Nauka, 1991, pp. 182–199.
Sidorin, A.Ya., Variations in the electrical resistivity of the upper layer of the Earth's crust, Dokl. AN SSSR (Dokl. Academy of Sciences of the USSR), 1984, vol. 278, no. 2, pp. 330–334. [in Russian].
Sidorin, A.Ya., Results of precision observations of variations in apparent resistivity at the Garm test
site, Dokl. AN SSSR (Dokl. Academy of Sciences of the USSR), 1986, vol. 290, no. 1, pp. 81–84. [in Russian].
Sidorin, A.Ya. (ed.), Garmskiy geofizicheskiy poligon (Garm geophysical test site), Moscow: Nauka, 1990, 240 p.
Sidorin, A.Ya., Predvestniki zemletryaseniy (Earthquake Precursors), Moscow: Nauka, 1992, 192 p.
Yakubovski, Yu.V., Elektrorazvedka. Uchebnik dlya vuzov (Electrical Exploration. Textbook for universities), Moscow: Nedra, 1980, 384 p.