Science and technological developments: article

V.B. Belakhovsky 1 V.A. Pilipenko 2,3 Ya.A. Sakharov 1 V.V. Vakhnina 4 V.N. Selivanov 5
1 Polar Geophysical Institute 2 Geophysical Center of the Russian Academy of Sciences 3 Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences 4 Togliatti State University 5 Northern Energetics Research Centre
Journal: Science and technological developments
Tome: 103
Number: 1
Year: 2024
Pages: 36-51
UDK: 550.831.015+550.831.23
DOI: 10.21455/std2024.1-3
Full text
Keywords: magnetic storms, geo-induced currents, power lines, ELF radiation
Аnnotation: It has been suggested that extremely low frequency (ELF) emissions can serve as an indirect remote means of detecting overloads in the operation of energy networks caused by geomagnetically induced currents (GICs). An analysis of the data from the registration system for GIC in power line transformers, a magnetometer and an ELF receiver on the Kola Peninsula during a magnetic storm on September 7–8, 2017 showed that the intensity of radiation at the industrial frequency of 50 Hz and its third harmonic of 150 Hz increases with increasing GIC. Apparently, under the influence of GIC, the transmitted currents in power lines (PTLs) turn out to be unbal-anced, so that the power line becomes a large-scale antenna and radiates both at the fundamental frequency of alternating current (50 Hz) and its harmonics. The discovered effect of increasing the imbalance of currents in power lines has not previously been noted as a possible factor in the impact of space weather on energy systems.
Bibliography: Arrillaga, J., Bradley, D., Bodger, P.S., Power System Harmonics, Chichester, John Wiley & Sons, 1985, 336 p.

Barnes, P.R., Van Dyke, J.W., Economic consequences of geomagnetic storms (a summary), IEEE Power Eng. Rev., 1990, vol. 10, iss. 11, pp. 3–4.

Belakhovsky, V.B., Pilipenko, V.A., Sakharov, Ya.A., Selivanov, V.N., Substorm influence on GIC registered in electric power lines: The magnetic storm of 7–8 September 2017, Phys. Auroral Phenom., 2019, vol. 42, no. 1, pp. 5–12.

Clilverd, M.A., Rodger, C.J., Brundell, J.B., Dalzell, M., Martin, I., Mac Manus, D.H., Thomson, N.R., Petersen, T., Obana, Y., Long-lasting geomagnetically induced currents and har-monic distortion observed in New Zealand during the 7–8 September 2017 disturbed period, Space Weather, 2018, vol. 16, iss. 6, pp. 704–717.

De Santis, A., De Franceschi, G., Spogli, L., Perrone, L., Alfonsi, L., Qamili, E., Cianchini, G., Di Giovambattista, R., Salvi, S., Filippi, E., Pavón-Carrasco, F.J., Monna, S., Piscini, A., Bat-tiston, R., Vitale, V., Picozza, P.G., Conti, L., Parrot, M., Pinçon, J.-L., Balasis, G., Tavani, M., Argan, A., Piano, G., Rainone, M.L., Liu, W., Tao, D., Geospace perturbations induced by the Earth: The state of the art and future trends, Phys. Chem. Earth, 2015, vol. 85–86, pp. 17–33.

Despirak, I.V., Kleimenova, N.G., Malysheva, L.M., Gromova, L.I., Gromov, S.V., Supersub-storms during storms on September 7–8, 2017, Geomagn. Aeron., 2020, vol. 60, iss. 3, pp. 292–300.

Eastwood, J.P., Biffis, E., Hapgood, M.A., Green, L., Bisi, M.M., Bentley, R.D., Wicks, R., McKinnell, L.-A., Gibbs, M., Burnett, C., The economic impact of space weather: Where do we stand?, Risk Analysis, 2017, vol. 37, iss. 2, pp. 206–218.

Engebretson, M.J., Simms, L.E., Pilipenko, V.A., Bouayed, L., Moldwin, M.B., Weygand, J.M., Hartinger, M.D., Xu, Zh., Clauer, C.R., Coyle, S., Willer, A.N., Freeman, M.P., Gerrard, A.J., Geomagnetic disturbances that cause GICs: Investigating their interhemispheric conju-gacy and control by IMF orientation, J. Geophys. Res. Space Phys., 2022, vol. 127, iss. 10, art. e2022JA030580, 23 p.

Fedorov, E.N., Mazur, N.G., Pilipenko, V.A., Vakhnina, V.V., Modeling ELF electromagnetic field in the upper ionosphere from power transmission lines, Radio Sci., 2020, vol. 55, iss. 7, art. e2019RS006943, 12 p.

Fedorov, E.N., Mazur, N.G., Pilipenko, V.A., Electromagnetic response of the mid-latitude iono-sphere to power transmission lines, J. Geophys. Res. Space Phys., 2021, vol. 126, iss. 10, art. e2021JA029659, 19 p.

García, R.M., Novas, N., Alcayde, A., El Khaled, D., Fernández-Ros, M., Gázquez, J., Progress in the knowledge, application and influence of extremely low frequency signals, Appl. Sci., 2020, vol. 10, iss. 10, art. 3494, 31 p.

Gaunt, C.T., Why space weather is relevant to electrical power systems, Space Weather, 2016, vol. 14, iss. 1, pp. 2–9.

Hübert, J., Beggan, C.D., Richardson, G.S., Martyn, T., Thomson, A.W.P., Differential magne-tometer measurements of geomagnetically induced currents in a complex high voltage net-work, Space Weather, 2020, vol. 18, iss. 4, art. e2019SW002421, 15 p.

Kobelev, A.V., Zybin A.A., Current issues of higher harmonics in the power urban systems, Vestnik TGTU (Transactions of the TSTU), 2011, vol. 17, no. 1, pp. 187–191. [in Russian].

Kostrov, A.V., Gushchin, M.E., Strikovskii, A.V., Generation and radiation of high power line harmonics, Geomagn. Aeron., 2017, vol. 57, iss. 4, pp. 482–490.


Marti, L., Yiu, C., Real-time management of geomagnetic disturbances: Hydro One’s eXtreme space weather control room tools, IEEE Electrification Magazine, 2015, vol. 3, iss. 4, pp. 46–51.

Němec, F., Santolík, O., Parrot, M., Berthelier, J.J., Power line harmonic radiation: A systematic study using DEMETER spacecraft, Adv. Space Res., 2007, vol. 40, iss. 3, pp. 398–403.

Němec, F., Santolík, O., Parrot, M., Bortnik, J., Power line harmonic radiation observed by satel-lite: Properties and propagation through the ionosphere, J. Geophys. Res. Space Phys., 2008, vol. 113, iss. A8, art. A08317, 9 p.

Němec, F., Parrot, M., Santolík, O., Power line harmonic radiation observed by the DEMETER spacecraft at 50/60 Hz and low harmonics, J. Geophys. Res. Space Phys., 2015, vol. 120, iss. 10, pp. 8954–8967.

Pilipenko, V.A., Space weather impact of on ground-based technological systems, Solar-Terrestrial Physics, 2021, vol. 7, iss. 3, pp. 68–104.

Pilipenko, V.A., Belakhovsky, V.B., Sakharov, Ya.A., Selivanov, V.N., Impact of the magnetic storm on September 7–8, 2017 on electro power system, Trudy Kol’skogo nauchnogo tsen-tra RAN (Transactions of the Kola Science Centre RAS), 2018, vol. 9, no. 5-4, pp. 29–35. [in Russian].

Pilipenko, V.A., Fedorov, E.N., Mazur, N.G., Klimov, S.I., Electromagnetic pollution of near-Earth space by power line emission, Solar-Terrestrial Physics, 2021, vol. 7, iss. 3, pp. 105–113.

Pilipenko, V.A., Chernikov, A.A., Soloviev, A.A., Yagova, N.V., Sakharov, Ya.A., Kudin, D.V., Kostarev, D.V., Kozyreva, O.V., Vorobiev, A.V., Belov, A.V., Influence of space weather on the reliability of the transport system functioning at high latitudes, Rus. J. Earth Sci., 2023, vol. 23, iss. 2, art. ES2008, 34 p. [in Russian].

Portillo, F., Alcayde, A., García, R.M., Novas, N., Gázquez, J.A., Férnadez-Ros, M., Grid fre-quency measurement through a PLHR analysis obtained from an ELF magnetometer, Sen-sors, 2022, vol. 22, iss. 8, art. 2954, 16 p.

Qiu, Q., Fleeman, J.A., Ball, D.R., Geomagnetic disturbance: A comprehensive approach by American Electric Power to address the impacts, IEEE Electrification Magazine, 2015, vol. 3, iss. 4, pp. 22–33.

Selivanov, V.N., Sakharov, Ya.A., Effects of geomagnetically induced currents on the harmon-ics in power transformers, Bull. Rus. Acad. Sci. Physics, 2021, vol. 85, no. 3, pp. 303–308.

Selivanov, V.N., Danilin, A.N., Kolobov, V.V., Sakharov, Ya.A., Barannik, M.B., Results of long-term recordings of currents in the neutrals of power transformers, Trudy Kol’skogo nauchnogo tsentra RAN (Transactions of the Kola Science Centre RAS), 2010, no. 1 (1), pp. 84–91. [in Russian].

Selivanov, V.N., Barannik, M.B., Danilin, A.N., Kolobov, V.V., Sakharov, Ya.A., A study of autotransformer neutral harmonic currents under geomagnetic disturbance conditions, Trudy Kol’skogo nauchnogo tsentra RAN (Transactions of the Kola Science Centre RAS), 2012, no. 1 (8), pp. 60–68. [in Russian].

Selivanov, V.N., Barannik, M.B., Bilin, V.A., Efimov, B.V., Kolobov, V.V., Sakharov, Ya.A., Analysis of long-term monitoring of autotransformer neutral currents, Vestnik of MSTU, 2018, vol. 21, no. 4, pp. 607–615. [in Russian].

Selivanov, V.N., Aksenovich, T.V., Bilin, V.A., Kolobov, V.V., Sakharov, Ya.A., Database of geomagnetically induced currents in the main transmission line “Northern Transit”, Solar-Terrestrial Physics, 2023, vol. 9, iss. 3, pp. 93–101.

Serovetnikov, A.S., Sivokon, V.P., Variations in the current spectrum of a transformer exposed to geomagnetic-induced currents, ELEKTRO. Elektrotekhnika, elektroenergetika, el-ektrotekhnicheskaya promyshlennost’ (ELECTRO. Electrical engineering, electrical power engineering, electrical industry), 2015, no. 1, pp. 15–18. [in Russian].

Sivokon, V.P., Serovetnikov, A.S., Pisarev, A.V., Higher harmonics as an indicator of geomag-netic-induced currents, ELEKTRO. Elektrotekhnika, elektroenergetika, elektrotekhnich-eskaya promyshlennost’ (ELECTRO. Electrical engineering, electrical power engineering, electrical industry), 2011, no. 3, pp. 30–34. [in Russian].

Trishchenko, L.D., Geomagnetic disturbances and power supply and wire communication sys-tems, in: Plazmennaya geliofizika (Plasma heliophysics), Vol. 2, Moscow, Fizmatlit, 2008, pp. 213–219.

Vakhnina, V.V., Kuvshinov, A.A., Shapovalov, V.A., Kuznetsov, V.N., Selemir, V.D., Karelin, V.I., Gorokhov, V.V., Mekhanizmy vozdeistviya kvazipostoyannykh geoindutsirovannykh tokov na elektricheskie seti (Mechanisms of influence of quasi-constant geo-induced cur-rents on electrical networks), Moscow, Vologda, Infra-Inzheneriya, 2018, 254 p.

Vakhnina, V.V., Kuvshinov, A.A., Kretov, D.A., Chernenko, A.N., Pudovinnikov, R.N., Model-ing of the impact of geo-induced currents on an isolated power system, Promyshlennaya en-ergetika (Industrial Power Engineering), 2022, no. 3, pp. 2–11. [in Russian].

Viljanen, A., Pulkkinen, A., Pirjola, R., Pajunpää, K., Posio, P., Koistinen, A., Recordings of ge-omagnetically induced currents and a nowcasting service of the Finnish natural gas pipeline system, Space Weather, 2006, vol. 4, iss. 10, art. S10004, 9 p.

Vzaimodeistvie elektromagnitnykh polei kontroliruemykh istochnikov SNCh-diapazona s ion-osferoi i zemnoi koroi (Interaction of Electromagnetic Fields of Controlled Sources in the VLF Range with the Ionosphere and the Earth’s Crust), Materials of the All-Russian scien-tific and practical seminar, vol. 1, ch. ed. E.P. Velikhov, Apatity, GI KSC RAS, 2014, 206 p.

Wu, J., Fu, J.-J., Zhang, Ch., Propagation characteristics of power line harmonic radiation in the ionosphere, Chinese Phys. B, 2014, vol. 23, no. 3, art. 034102, 8 p.

Wu, J., Zhang, Ch., Zeng, L., Ma, Q., Systematic investigation of power line harmonic radiation in near-Earth space above China based on observed satellite data, J. Geophys. Res. Space Phys., 2017, vol. 122, iss. 3, pp. 3448–3458.

Wu, J., Guo, Q., Yan, X., Zhang, Ch., Theoretical analysis on affecting factors of power line harmonic radiation, IEEE Transact. Plasma Sci., 2019, vol. 47, iss. 1, pp. 770–775.

Wu, J., Guo, Q., Yue, Ch., Xie, L., Zhang, Ch., Special electromagnetic interference in the iono-sphere directly correlated with power system, IEEE Transact. Electromagn. Compat., 2020, vol. 62, iss. 3, pp. 947–954.

Zhang, Ch., Ma, Q., Influences of radiation from terrestrial power sources on the ionosphere above China based on satellite observation, IOP Conf. Ser. Earth Environ. Sci., 2018, vol. 153, iss. 4, art. 042002, 6 p.

Zhao, Sh., Liao, L., Shen, X., Lu, H., Zhima, Z., Huang, J., Zhou, Ch., CSES satellite observa-tions of 50 Hz power line radiation over Mainland China and its response to COVID-19, J. Geophys. Res. Space Phys., 2022, vol. 127, iss. 9, art. e2022JA030693, 10 p.