Science and technological developments: article

E.P. Spiridonov 1 O.E. Nanii 1,2 S.P. Nikitin 1,3 K.V. Kislov 4 Yu.O. Starovoit 1 D.M. Bengalskii 1 V.N. Treshchikov 1
1 T8 LLC, Moscow, Russia 2 Lomonosov Moscow State University 3 Femtovision LLC 4 Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences
Journal: Science and technological developments
Tome: 102
Number: 4
Year: 2023
Pages: 75-87
UDK: 550.34; 535.41
DOI: 10.21455/std2023.4-5
Full text
Keywords: hardware-software system “Dunay”, distributed acoustic sensing, DAS, Global DAS Month, February 2023 earthquakes in Turkey, signal quality assessment, first arrivals picking
Аnnotation: In February 2023, the international experiment Global DAS Month was carried. A unique data set of more than 156 events with M ≥ 5 was collected by participants and recorded by different DAS systems deployed world-wide. The purpose of the experiments was to evaluate the feasibility of the global DAS system for teleseismic monitoring and to identify any bottlenecks that may arise. The article presents preliminary results of data anal-ysis obtained by T8 Sensor LLC, a Russian participant in the experiment. Some metrological characteristics of the applied observation system had been evaluated. The conducted study allows to compare DAS system with world analogues in the area of seismic monitoring and to map out a plan for the future works.
Bibliography: Becker, M.W., Ciervo, C., Coleman, T., Laboratory testing of low frequency strain measured by distributed acoustic sensing, SEG Technical Program Expanded Abstracts, 2018, pp. 4963–4966.

Celli, N.L., Bean, C.J., O’Brien, G., Nooshiri, N., Modelling of DAS cable and ground coupling re-sponse using Discrete Particle Schemes, EGU General Assembly 2023, Vienna, 23–28 April 2023, EGU23-14444.

Dunay – Distributed acoustic sensor, URL: [Access date: 27.12.2023].

Gaudot, I., Leroy, M., Bitri, A., Bretaudeau, F., Comparison of DAS surface waves records at ge-otechnical scales using telecom fiber optic with different cable and ground coupling, EGU General Assembly 2023, Vienna, 23–28 April 2023, EGU23-1884.

Gorshkov, B.G., Yüksel, K., Fotiadi, A.A., Wuilpart, M., Korobko, D.A., Zhirnov, A.A., Ste-panov, K.V., Turov, A.T., Konstantinov, Yu.A., Lobach, I.A., Scientific applications of dis-tributed acoustic sensing: State-of-the-art review and perspective, Sensors, 2022, vol. 22, iss. 3, art. 1033, 41 p.

Jiang, K., Liang, L., Tong, X., Zeng, F., Hu, X., How the material characteristics of optical fibers and soil influence the measurement results of distributed acoustic sensing, Sensors, 2023, vol. 23, iss. 17, art. 7340, 14 p.

Jousset, Ph., Reinsch, T., Ryberg, T., Blanck, H., Clarke, A., Aghayev, R., Hersir, G.P., Hen-ninges, J., Weber, M., Krawczyk, C.M., Dynamic strain determination using fibre-optic ca-bles allows im-aging of seismological and structural features, Nat. Commun., 2018, vol. 9, art. 2509, 11 p.

Jousset, Ph., Wuestefeld, A., Krawczyk, C., Wollin, C., Diaz, S., Ehsaninezhad, L., Rodriguez Tribaldos, V., Hart, J., Wuestefeld, A., Baird, A., Oye, V., Currenti, G., Prestifilippo, M., Napoli, R., Landrø, M., Rørstadbotnen, R.A., Nowacki, A., de Ridder, S., Booth, A., Spica, Z., Ruiz Barajas, S., Gaite, B., Lindner, F., Konca, Ö.A., Edme, P., Fichtner, A., Bowden, D., Rinaldi, A.P., Shaikhsulaiman, A., Lai, V.H., Miller, M., Treshchikov, V., Nikitin, S., Urmantseva, L., Zapf, D., Morten, J.P., Lienhart, W., Strasser, L., Dumitru, V., Lipovsky, B.P., Schoenball, M., Wetter, C., Ma, K.-F., Global distributed fibre optic sensing recordings of the February 2023 Turkey earthquake sequence, EGU General Assembly 2023, Vienna, 23–28 April 2023, EGU23-17618.

Kennett, B.L.N., Engdahl, E.R., Travel times for global earthquake location and phase identifica-tion, Geophys. J. Int., 1991, vol. 105, iss. 2, pp. 429–465.

Kislov, K.V., Gravirov, V.V., Distributed acoustic sensing: A new tool or a new paradigm, Seis-mic Instruments, 2022, vol. 58, iss. 5, pp. 485–508.

Lindsey, N.J., Rademacher, H., Ajo-Franklin, J.B., On the broadband instrument response of fi-ber-optic DAS arrays, J. Geophys. Res. Solid Earth, 2020, vol. 125, iss. 2, art. e2019JB018145, 16 p.

Lior, I., Sladen, A., Mercerat, D., Ampuero, J.-P., Rivet, D., Sambolian, S., Strain to ground mo-tion conversion of distributed acoustic sensing data for earthquake magnitude and stress drop de-termination, Solid Earth, 2021, vol. 12, iss. 6. pp. 1421–1442.

Nikitin, S.P., Kislov, K.V., Starovoit, Yu.O., Bengalskii, D.M., Spiridonov, E.P., Kharasov, D.R., Fomiryakov, E.A., Nanii, O.E., Treshchikov, V.N., Possibilities and prospects for the use of distributed fiber sensors in geophysics, Instrum. Exp. Tech., 2023a, vol. 66, iss. 5, pp. 854–859.

Nikitin, S.P., Spiridonov, E.P., Kislov, K.V., Starovoit, Yu.O., Bengalskii, D.M., Kharasov, D.R., Fomiryakov, E.A., Nanii, O.E., Treshchikov, V.N., Experimental results of recording earth-quakes by coherent Rayleigh reflectometers, Foton-Ekspress (Photon-Express), 2023b, no. 6 (190) [Special issue “Photon-Express-Science 2023”], pp. 282–283. [in Russian].

Paitz, P., Edme, P., Schmelzbach, C., Doetsch, J., Gräff, D., Walter, F., Lindsey, N., Chalari, A., Fichtner, A., Distributed acoustic sensing from mHz to kHz: Empirical investigations of DAS instrument response, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7343.

Rossi, M., Wisén, R., Vignoli, G., Coni, M., Assessment of Distributed Acoustic Sensing (DAS) per-formance for geotechnical applications, Eng. Geol., 2022, vol. 306, art. 106729, 14 p.

Spiridonov, E.P., Nikitin, S.P., Kislov, K.V., Starovoit, Yu.O., Bengalskii, D.M., Nanii, O.E., Treshchikov, V.N., Preliminary results of the analysis of signals recorded by a distributed acoustic sensor within the framework of the international experiment Global DAS Month, in: III All-Russian Scientific Conference with International Participation “Modern Methods of Seismic Hazard Assessment and Earthquake Prediction”, Moscow, 25–26 October 2023, Proceedings and program of the conference, eds. A.P. Kerzhaev, A.I. Filippova, Moscow, IEPT RAS, 2023, pp. 254–258. [in Russian].

van den Ende, M.P.A., Ampuero, J.-P., Evaluating seismic beamforming capabilities of distrib-uted acoustic sensing arrays, Solid Earth, 2021, vol. 12, iss. 4, pp. 915–934.

Wüstefeld, A., Global DAS monitoring month, URL: [Access date: 21.04.2023].

Wuestefeld, A., Spica, Z.J., Aderhold, K., Huang, H.-H., Ma, K.-F., Lai, V.H., Miller, M., Urmantseva, L., Zapf, D., Bowden, D.C., Edme, P., Kiers, T., Rinaldi, A.P., Tuinstra, K., Jestin, C., Diaz-Meza, S., Jousset, Ph., Wollin, C., Ugalde, A., Ruiz Barajas, S., Gaite, B., Currenti, G., Prestifilippo, M., Araki, E., Tonegawa, T., de Ridder, S., Nowacki, A., Lindner, F., Schoenball, M., Wetter, C., Zhu, H.H., Baird, A.F., Rørstadbotnen, R.A., Ajo-Franklin, J., Ma, Y., Abbott, R.E., Hodgkinson, K.M., Porritt, R.W., Stanciu, C., Podrasky, A., Hill, D., Biondi, B., Yuan, S., Luo, B., Nikitin, S., Morten, J.P., Dumitru, V.-A., Lienhart, W., Cunningham, E., Wang, H., The Global DAS Month of February 2023, Seismol. Res. Lett., 2023. [in press].

Zhang, Ch.-Ch., Shi, B., Zhu, H.-H., Wang, B.-J., Wei, G.-Q., Toward distributed fiber-optic sensing of subsurface deformation: A theoretical quantification of ground-borehole-cable interaction, J. Geophys. Res. Solid Earth, 2020, vol. 125, iss. 3. art. e2019JB018878, 25 p.