Наука и технологические разработки: статья

ОБЗОР ПЕРСПЕКТИВНЫХ ИСПОЛЬЗОВАНИЙ РАСПРЕДЕЛЕННОГО АКУСТИЧЕСКОГО ЗОНДИРОВАНИЯ
К.В. Кислов 1 В.В. Гравиров 1,2
1 Институт теории прогноза землетрясений и математической геофизики РАН
2 Институт физики Земли им. О.Ю. Шмидта РАН
Журнал: Наука и технологические разработки
Том: 102
Номер: 4
Год: 2023
Страницы: 4-37
УДК: 550.34.038.4
DOI: 10.21455/std2023.4-1
Ключевые слова: распределенное акустическое зондирование, DAS, вулканология, приповерхностная геофизика, сейсмостойкость зданий и сооружений, морская геофизика, горное дело, раннее предупреждение о цунами
Аннотация: Технология распределенного акустического зондирования (DAS) – использование оптоволоконного кабеля в качестве линейного массива виртуальных сейсмических датчиков – позволяет получать все более качественные данные для изображений недр и характеристик сейсмических событий в сложных условиях. В статье мы приводим обзор геофизических задач, в которых применение DAS наиболее оправданно. Основной акцент делается на тех приложениях, в которых использование этой технологии перспективно именно для России. Обсуждается потенциал волоконно-оптических измерений, способных революционизировать традиционные геофизические подходы. Приведены результаты, полученные в разных странах и опубликованные в научных журналах. Затронуты такие области, как вулканология, приповерхностные исследования, сейсмостойкость зданий и сооружений, морская геофизика, горное дело и др. Технология DAS идеально подходит для применений, в которых важны надежность, плотность измерений и низкая стоимость.
Список литературы: Алексеев А.Э., Черкашнев С.А. Волоконная когерентная рефлектометрия для геолого-геофизических исследований [Электронный ресурс]. http://geovers.com/base/files/gr16/presentation/pr_27_2016_Cherkashnev.pdf [Дата обращения: 02.09.2023].

Горшков Б.Г., Ильинский Д.А., Симикин Д.Е., Таранов М.А. Регистрация землетрясений распределенным акустическим датчиком (DAS), размещенным на мелководье Черного моря // III Всероссийская научная конференция с международным участием “Современные методы оценки сейсмической опасности и прогноза землетрясений”, Москва, 25–26 октября 2023 г. Материалы докладов и программа конференции / Под ред. А.П. Кержаева, А.И. Филипповой. М.: ИТПЗ РАН, 2023. С.54–56. https://www.itpz-ran.ru/wp-content/uploads/2023/11/2023-ITPZ-Conference-Materials.pdf

Дашков М.В., Смирнов А.С. Поляризационная рефлектометрия оптических волокон: физические основы, методы и приложения (обзорная статья) // Прикладная фотоника. 2018. Т. 5, № 1–2. С.62–91. https://doi.org/10.15593/2411-4367/2018.1-2.05

Ильинский Д.А., Алексеев А.Э., Ганжа О.Ю., Симикин Д.Е., Оджа М. Использование воло-конно-оптических линий связи с фазочувствительным рефлектометром для регистра-ции сейсмических колебаний // Сейсмические приборы. 2020. Т. 56, № 4. С.5–28. https://doi.org/10.21455/si2020.4-1

Кислов К.В., Гравиров В.В. Раннее предупреждение о землетрясении и сейсмический мо-ниторинг отдельных объектов // XVI Всероссийская научно-практическая конференция “Проблемы прогнозирования чрезвычайных ситуаций”, 2017 г. Доклады и выступления. М.: ФКУ Центр “Антистихия” МЧС России, 2017. С.82–88. http://www.mchs.gov.ru/upload/site1/document_file/w5PgTGcnn5.pdf

Кислов К.В., Гравиров В.В. Вращательная сейсмология. Обзор достижений и перспектив // Сейсмические приборы. 2020. Т. 56, № 3. С.5–25. https://doi.org/10.21455/si2020.3-1

Кислов К.В., Гравиров В.В. Чем DAS полезен для нас // II Всероссийская научная конференция с международным участием “Современные методы оценки сейсмической опасности и прогноза землетрясений”, Москва, 29–30 сентября 2021 г. Тезисы докладов и программа конференции / Под ред. О.В. Селюцкой. М.: ИТПЗ РАН, 2021. С.56–58. https://www.itpz-ran.ru/wp-content/uploads/2021/11/2021-ITPZ-Conference-Abstracts.pdf

Кислов К.В., Гравиров В.В. Распределенное акустическое зондирование: новый инструмент или новая парадигма // Сейсмические приборы. 2022. Т. 58, № 2. C.5–38. https://doi.org/10.21455/si2022.2-1

Кугаенко Ю.А., Салтыков В.А., Горбатиков А.В., Степанова М.Ю. Особенности глубин-ного строения зоны трещинных Толбачинских извержений (Камчатка, Ключевская группа вулканов) по комплексу геолого-геофизических данных // Физика Земли. 2018. № 3. С.60–83. https://doi.org/10.7868/S0002333718030055

Марченков А.Ю. Вибрационный мониторинг объектов гражданского строительства // Фундаментальные и прикладные аспекты геологии, геофизики и геоэкологии с использова-нием современных информационных технологий: Материалы V Международной научно-практической конференции. Майкоп: Майкопский ГТУ, 2019. С.34 35.

Никитин С.П., Кислов К.В., Старовойт Ю.О., Бенгальский Д.М., Спиридонов Е.П., Хара-сов Д.Р., Фомиряков Э.А., Наний О.Е., Трещиков В.Н. Возможности и перспективы ис-пользования распределенных оптоволоконных датчиков в геофизике // Приборы и тех-ника эксперимента. 2023. № 5. С.153–158. https://doi.org/10.31857/S0032816223050191

СП 14.13330.2018 Строительство в сейсмических районах. Актуализированная редакция СНиП II-7-81* (с Изменением N 1). 2021. URL: http://docs.cntd.ru/document/550565571

Спиридонов Е.П., Никитин С.П., Кислов К.В., Старовойт Ю.О., Бенгальский Д.М., Наний О.Е., Трещиков В.Н. Предварительные результаты анализа сигналов, зарегистрированных распределенным акустическим сенсором в рамках международного эксперимента Global DAS Month // III Всероссийская научная конференция с международным участием “Современные методы оценки сейсмической опасности и прогноза землетрясений”, Москва, 25–26 октября 2023 г. Материалы докладов и программа конференции / Под ред. А.П. Кержаева, А.И. Филипповой. М.: ИТПЗ РАН, 2023. С.254–258. https://www.itpz-ran.ru/wp-content/

uploads/2023/11/2023-ITPZ-Conference-Materials.pdf

Чугаев А.В. Опыт применения распределенных оптоволоконных акустических датчиков со спиральным волокном для выполнения скважинных сейсмических исследований // 19-я научно-практическая конференция и выставка “Инженерная и рудная геофизика 2023”, Санкт-Петербург, 15–19 мая 2023 г. Материалы конференции. М.: ЕАГЕ ГЕОМОДЕЛЬ, 2023. С.624–631.

Чугаев А.В., Кузнецов А.И. Оценка возможностей распределенной оптоволоконной системы регистрации со спиральным кабелем для проведения межскважинного сейсмоакустического просвечивания // Приборы и техника эксперимента. 2023. № 5. С.167–173. https://doi.org/

10.31857/S0032816223050087

Чугаев А.В., Симикин Д.Е., Тезиков А.Д. Количественная оценка чувствительности оптоволоконных распределенных датчиков на основании данных межскважинного просвечи-вания // III Всероссийская научная конференция с международным участием “Современные методы оценки сейсмической опасности и прогноза землетрясений”, Москва, 25–26 октября 2023 г. Материалы докладов и программа конференции / Под ред. А.П. Кержаева, А.И. Филипповой. М.: ИТПЗ РАН, 2023. С.274–278. https://www.itpz-ran.ru/wp-content/uploads/2023/11/2023-ITPZ-Conference-Materials.pdf

Шнеерсон М.Б. Распределенные акустические сейсмические системы при работах ВСП // Экспозиция Нефть Газ. 2017. № 1 (54). С.23–25.

Abadi S. Exploring the use of distributed acoustic sensing (DAS) for ocean acoustic monitoring // Geophysics Working Group. DAS RCN Webinar. URL: https://youtu.be/9gWeJmJ8g7s [Access date: 22.09.2023].

Abbott R., Mellors R., Pitarka A. Distributed acoustic sensing observations and modeling of the DAG series of chemical explosions // CTBT: Science and Technology Conference, Vienna, 24–28 June 2019. Id. T2.3-P12. URL: https://conferences.ctbto.org/event/17/contributions/3630/

Aimar M., Cox B.R., Foti S. Surface wave testing with distributed acoustic sensing measurements to estimate the shear-wave velocity and the small-strain damping ratio // Geotechnical Engi-neering in the Digital and Technological Innovation Era – CNRIG 2023 / Eds. A. Ferrari, M. Rosone, M. Ziccarelli, G. Gottardi. Springer, 2023. P.145–152. https://doi.org/10.1007/978-3-031-34761-0_18

Ajo-Franklin J.B., Dou S., Lindsey N.J., Monga I., Tracy C., Robertson M., Rodriguez Tribaldos V., Ulrich C., Freifeld B., Daley T., Li X. Distributed acoustic sensing using dark fiber for near-surface characterization and broadband seismic event detection // Sci. Rep. 2019. V. 9. Art. 1328. 14 p. https://doi.org/10.1038/s41598-018-36675-8

Alekseev A.E., Gorshkov B.G., Il’inskii D.A., Potapov V.T., Simikin D.E., Taranov M.A. Applica-tion of a distributed acoustic sensor for seismic surveys in shallow waters with fiber-optic bottom-laid streamer // Instrum. Exp. Tech. 2023. V. 66, Iss. 5. P.849–853. https://doi.org/10.1134/S0020441223050032

Alfataierge E., Aldawood A., Bakulin A., Stewart R.R., Merry H. Influence of gauge length on DAS VSP data at the Houston Research Center test well // SEG Technical Program Expanded Abstracts. 2020. P.505–509. https://doi.org/10.1190/segam2020-3419066.1

Allegra M., Currenti G., Cannavò F., Jousset Ph., Prestifilippo M., Napoli R., Sciotto M., Di Grazia G., Privitera E., Palazzo S., Krawczyk C. Deep learning approach for detecting low frequency events on DAS data at Vulcano Island, Italy // EGU General Assembly 2023, Vi-enna, 23–28 April 2023. EGU23-16459. https://doi.org/10.5194/egusphere-egu23-16459

Aung T.L., Ma N., Kishida K., Guzik A. Advanced structural health monitoring method by inte-grated isogeometric analysis and distributed fiber optic sensing // Sensors. 2021. V. 21, Iss. 17. Art. 5794. 18 p. https://doi.org/10.3390/s21175794

Baba S., Araki E., Yamamoto Y., Hori T., Fujie G., Nakamura Y., Yokobiki T., Matsumoto H. Ob-servation of shallow slow earthquakes by distributed acoustic sensing using offshore fiber-optic cable in the Nankai Trough, southwest Japan // Geophys. Res. Lett. 2023. V. 50, Iss. 12. Art. e2022GL102678. 9 p. https://doi.org/10.1029/2022GL102678

Baillet M., Trabattoni A., Van Den Ende M., Vernet C., Rivet D. A workflow to generate DAS based earthquake catalog, applied to an offshore telecommunication cable in central Chile // EGU General Assembly 2023, Vienna, 23–28 April 2023. EGU23-11782. https://doi.org/10.5194/egusphere-egu23-11782

Barrancos J., D’Auria L., Falcón García A., Preciado-Garbayo J., Cabrera Pérez I., Martínez van Dorth D., Padilla G.D., Przeor M., Ortega V., Pérez N.M. Characterization of the vol-canic tremor during the 2021 Tajogaite eruption (La Palma, Canary Islands) through Distrib-uted Acoustic Sensing // XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG), Berlin, 11–20 July 2023. https://doi.org/10.57757/IUGG23-2766

Barrias A., Casas J.R., Villalba S. A review of distributed optical fiber sensors for civil engi-neering applications // Sensors. 2016. V. 16, Iss. 5. Art. 748. 35 p. https://doi.org/10.3390/s16050748

Becerril C., Pelaez J. Detection of tsunami waves and ocean temperature anomalies with DAS // Geophysics Working Group. DAS RCN Webinar. URL: https://youtu.be/aBaRaw9NzmU [Access date: 22.12.2023].

Becerril C., Vidal-Moreno P.J., Sladen A., Ampuero J.-P., Gonzalez-Herraez M. Towards tsu-nami early-warning with Distributed Acoustic Sensing (DAS) // AGU Fall Meeting 2022, Chicago, IL, 12–16 December 2022. Id. S16A-07. https://ui.adsabs.harvard.edu/abs/2022AGUFM.S16A..07B/abstract

Biagioli F., Métaxian J.-P., Stutzmann E., Ripepe M., Trabattoni A., Bernard P., Longo R., Di-ana G., Innocenti L., Capdeville Y., Bouin M.-P., Lacanna G. Using distributed acoustic sensing to monitor and investigate eruptive events at Stromboli Volcano, Italy // EGU Gen-eral Assembly 2023, Vienna, 23–28 April 2023. EGU23-3955. https://doi.org/10.5194/egusphere-egu23-3955

Borodin I., Segal A. Real-time hydraulic fracture monitoring and wellbore characterization with distributed acoustic sensing of pumping noise // The Leading Edge. 2020. V. 39, Iss. 11. P. 785–792. https://doi.org/10.1190/tle39110785.1

Bouffaut L., Taweesintananon K., Kriesell H.J., Rørstadbotnen R., Potter J.R., Landrø M., Jo-hansen S.E., Brenne J.K., Haukanes A., Schjelderup O., Storvik F. Eavesdropping at the speed of light: Distributed acoustic sensing of baleen whales in the Arctic // Front. Marine Sci. 2022. V. 9. Art. 901348. 13 p. https://doi.org/10.3389/fmars.2022.901348

Bu P., Li Y., Li B., Wang X., Zhang Y., Xu Z. Study on stress-deformation mechanism of concrete face rockfill dam based on centrifugal model test // Measurement. 2023. V. 216. Art. 112973. https://doi.org/10.1016/j.measurement.2023.112973

Chai J., Ouyang Y., Liu J., Zhang D., Du W. Experimental evaluation of precise monitoring of multi-scale deformation failure of rock mass based on distributed optical fiber // Measure-ment. 2022. V. 199. Art. 111381. https://doi.org/10.1016/j.measurement.2022.111381

Chen D., Liu Q., He Z. 108-km distributed acoustic sensor with 220-pε/√Hz strain resolution and 5-m spatial resolution // J. Lightwave Technol. 2019. V. 37, Iss. 18. P.4462–4468. https://doi.org/10.1109/JLT.2019.2901276

Chen Sh., Wang J., Zhang Ch., Li M., Li N., Wu H., Liu Y., Peng W., Song Y. Marine structural health monitoring with optical fiber sensors: A review // Sensors. 2023. V. 23, Iss. 4. Art. 1877. 22 p. https://doi.org/10.3390/s23041877

Cheng F., Chi B., Lindsey N.J., Dawe T.C., Ajo-Franklin J.B. Utilizing distributed acoustic sens-ing and ocean bottom fiber optic cables for submarine structural characterization // Sci. Rep. 2021. V. 11. Art. 5613. 14 p. https://doi.org/10.1038/s41598-021-84845-y

Cheng F., Ajo-Franklin J.B., Rodriguez Tribaldos V. High-resolution near-surface imaging at the basin scale using dark fiber and distributed acoustic sensing: Towards site effect estimation in urban environments // J. Geophys. Res. Solid Earth. 2023. V. 128, Iss. 9. Art. e2023JB026957. https://doi.org/10.1029/2023JB026957

Chugaev А.V., Tarantin M.V. Amplitude-frequency response of a helically-wound fiber distrib-uted acoustic sensor (DAS) // Mining Sci. Tech. (Russia). 2023. V. 8, N 1. P.13–21. https://doi.org/10.17073/2500-0632-2022-06-10

Cunningham E., Lord N., Fratta D., Chavarria A., Thurber C., Wang H. Three-dimensional dis-tributed acoustic sensing at the Sanford Underground Research Facility // Geophysics. 2023. V. 88, Iss. 6. P.WC209–WC220. https://doi.org/10.1190/geo2023-0079.1

Currenti G., Allegra M., Cannavò F., Jousset Ph., Prestifilippo M., Napoli R., Sciotto M., Di Grazia G., Privitera E., Palazzo S., Krawczyk C. Distributed dynamic strain sensing of very long period and long period events on telecom fiber-optic cables at Vulcano, Italy // Sci. Rep. 2023. V. 13. Art. 4641. 17 p. https://doi.org/10.1038/s41598-023-31779-2

Czarny R., Zhu T., Shen J. Spatiotemporal evaluation of Rayleigh surface wave estimated from roadside dark fiber DAS array and traffic noise // Seismica. 2023. V. 2, N 2. 10 p. https://doi.org/10.26443/seismica.v2i2.247

Dahm T., Sens-Schönfelder Ch., Milkereit C., Isken M., Cesca S., Yuan X., Tilmann F., Pilz M., Cotton F., Woith H., Hensch M., Schmidt B., Knapmeyer-Endrun B., Meier T., Eckel F., de Siena L., van Camp M., Lecocq Th., Oth A., Deng Z. A large-N passive seismological exper-iment to unravel the structure and activity of the transcrustal magma system of the Eifel Volcanic Field // EGU General Assembly 2023, Vienna, 23–28 April 2023. EGU23-2590. https://doi.org/10.5194/egusphere-egu23-2590

Diaz-Meza S., Jousset Ph., Currenti G., Wollin C., Krawczyk C., Clarke A., Chalari A. On the comparison of records from standard and engineered fiber optic cables at Etna Volcano (Ita-ly) // Sensors. 2023. V. 23, Iss. 7. Art. 3735. 18 p. https://doi.org/10.3390/s23073735

Distributed Acoustic Sensing in Geophysics: Methods and Applications / Eds. Y. Li, M. Karren-bach, J.B. Ajo-Franklin. Hoboken: John Wiley & Sons, 2021. 301 p. https://doi.org/10.1002/9781119521808

Douglass A.S., Abadi S., Lipovsky B.P. Distributed Acoustic Sensing for detecting near surface hydroacoustic signals // ESS Open Archive. March 16, 2023. 15 p. https://doi.org/10.22541/essoar.167898509.99481098/v1

Du W., Chai J., Zhang D., Ouyang Y., Liu Y. Study on quantitative characterization of coupling effect between mining-induced coal-rock mass and optical fiber sensing // Sensors. 2022. V. 22, Iss. 13. Art. 5009. 18 p. https://doi.org/10.3390/s22135009

Eaid M.V., Keating S.D., Innanen K.A., Macquet M., Lawton D. Field assessment of elastic full waveform inversion of combined accelerometer and distributed acoustic sensing data in a vertical seismic profile configuration // Geophysics. 2023. V. 88, Iss. 6. P.WC163–WC180. https://doi.org/10.1190/geo2023-0066.1

Ehsaninezhad L., Wollin C., Schwarz B., Krawczyk C. Coherence-based amplification of Ray-leigh waves from urban anthropogenic noise recorded with distributed acoustic sensing // EGU General Assembly 2023, Vienna, 23–28 April 2023. EGU23-12740. https://doi.org/10.5194/egusphere-egu23-12740

Fang G., Li Y.E., Zhao Y., Martin E.R. Urban near-surface seismic monitoring using distributed acoustic sensing // Geophys. Res. Lett. 2020. V. 47, Iss. 6. Art. e2019GL086115. 9 p. https://doi.org/10.1029/2019GL086115

Fenta M.C., Potter D.K., Szanyi J. Fibre optic methods of prospecting: A comprehensive and modern branch of geophysics // Surv. Geophys. 2021. V. 42, Iss. 3. P.551–584. https://doi.org/10.1007/s10712-021-09634-8

Fernández-Ruiz M.R., Martins H.F., Williams E.F., Becerril C., Magalhães R., Costa L., Martin-Lopez S., Jia Zh., Zhan Zh., González-Herráez M. Seismic monitoring with distributed acoustic sensing from the near-surface to the deep oceans // J. Lightwave Technol. 2022. V. 40, Iss. 5. P.1453–1463. https://doi.org/10.1109/JLT.2021.3128138

Fiber Optic Sensing Association. URL: https://fiberopticsensing.org/fosa-webinars/ [Access date: 09.12.2023].

Flores D.M., Mercerat E.D., Ampuero J.-P., Rivet D., Sladen A. Identification of two vibration regimes of underwater fibre optic cables by distributed acoustic sensing // Geophys. J. Int. 2023a. V. 234, Iss. 2. P.1389–1400. https://doi.org/10.1093/gji/ggad139

Flores D.M., Sladen A., Ampuero J.-P., Mercerat E.D., Rivet D. Monitoring deep sea currents with seafloor distributed acoustic sensing // Earth Space Sci. 2023b. V. 10, Iss. 6. Art. e2022EA002723. 13 p. https://doi.org/10.1029/2022EA002723

Glišić B., Inaudi D. Fibre Optic Methods for Structural Health Monitoring. John Wiley & Sons, 2007. 288 p. https://doi.org/10.1002/9780470517819

Gonzalez-Herraez M., Fernandez-Ruiz M.R., Magalhaes R., Costa L., Martins H.F., Garcia-Ruiz A., Martin-Lopez S., Williams E., Zhan Zh., Vantilho R. Distributed acoustic sensing in seis-mology // Optical Fiber Sensors Conference 2020 Special Edition / Eds. G. Cranch, A. Wang, M. Digonnet, P. Dragic. OSA Technical Digest, 2020. Paper Th2.1. https://doi.org/10.1364/OFS.2020.Th2.1

Gorshkov B.G., Gorshkov G.B., Taranov M.A. Simultaneous temperature and strain sensing us-ing distributed Raman optical time-domain reflectometry // Laser Phys. Lett. 2017. V. 14, N 1. Art. 015103. https://doi.org/10.1088/1612-202x/14/1/015103

Gorshkov B.G., Alekseev A.E., Simikin D.E., Taranov M.A., Zhukov K.M., Potapov V.T. A cost-effective distributed acoustic sensor for engineering geology // Sensors. 2022a. V. 22, Iss. 23. Art. 9482. 12 p. https://doi.org/10.3390/s22239482

Gorshkov B.G., Alekseev A.E., Taranov M.A., Simikin D.E., Potapov V.T., Ilinskiy D.A. Low noise distributed acoustic sensor for seismology applications // Applied Optics. 2022b. V. 61, Iss. 28. P.8308–8316. https://doi.org/10.1364/AO.468804

Gorshkov B.G., Yüksel K., Fotiadi A.A., Wuilpart M., Korobko D.A., Zhirnov A.A., Stepanov K.V., Turov A.T., Konstantinov Yu.A., Lobach I.A. Scientific applications of distributed acoustic sensing: State-of-the-art review and perspective // Sensors. 2022c. V. 22, Iss. 3. Art. 1033. 41 p. https://doi.org/10.3390/s22031033

Grimm J., Poli P., Jousset Ph. Detecting seismo-volcanic events based on inter-channel coher-ency of a DAS cable // EGU General Assembly 2023, Vienna, 23–28 April 2023. EGU23-9089. https://doi.org/10.5194/egusphere-egu23-9089

Guerin G., Rivet D. Using localized microseismic noise sources to perform high-resolution seis-mic imaging of seafloor using Distributed Acoustic Sensing // EGU General Assembly 2023, Vienna, 23–28 April 2023. EGU23-16640. https://doi.org/10.5194/egusphere-egu23-16640

Hu T., Hou G., Li Z. The field monitoring experiment of the roof strata movement in coal mining based on DFOS // Sensors. 2020. V. 20, Iss. 5. Art. 1318. 31 p. https://doi.org/10.3390/s20051318

Hubbard P.G., Xu J., Zhang Sh., Dejong M., Luo L., Soga K., Papa C., Zulberti C., Malara D., Fugazzotto F., Garcia Lopez F., Minto C. Dynamic structural health monitoring of a model wind turbine tower using distributed acoustic sensing (DAS) // J. Civil Struct. Health Monit. 2021. V. 11, Iss. 3. P.833–849. https://doi.org/10.1007/s13349-021-00483-y

Hull R., Meek R., Bello H., Woller K., Wagner J. Monitoring horizontal well hydraulic stimula-tions and geomechanical deformation processes in the unconventional shales of the Midland Basin using fiber-based time-lapse VSPs, microseismic, and strain data // The Leading Edge. 2019. V. 38, Iss. 2. P.130–137. https://doi.org/10.1190/tle38020130.1

Ichikawa M., Uchida S., Katou M., Kurosawa I., Tamura K., Kato A., Ito Y., De Groot M., Hara S. Case study of hydraulic fracture monitoring using multiwell integrated analysis based on low-frequency DAS data // The Leading Edge. V. 39, Iss. 11. P.794–800. https://doi.org/10.1190/tle39110794.1

Ide S., Araki E., Matsumoto H. Very broadband strain-rate measurements along a submarine fi-ber-optic cable off Cape Muroto, Nankai subduction zone, Japan // Earth Planets Space. 2021. V. 73. Art. 63. 10 p. https://doi.org/10.1186/s40623-021-01385-5

Jiang W., Lin J., Liu B., Zhang R., Zhang B., Yang Zh., Gu Y. Distributed acoustic sensing for shallow structure imaging using mechanical noise: A case study in Guangzhou, China // J. Appl. Geophys. 2023. V. 215. Art. 105139. https://doi.org/10.1016/j.jappgeo.2023.105139

Jousset Ph., Currenti G., Schwarz B., Chalari A., Tilmann F., Reinsch T., Zuccarello L., Privitera E., Krawczyk C.M. Fibre optic distributed acoustic sensing of volcanic events // Nat. Com-mun. 2022. V. 13. Art. 1753. 16 p. https://doi.org/10.1038/s41467-022-29184-w

Jousset Ph., Currenti G., Murphy S., Diaz Meza S.A., Napoli R., Gutscher M.-A., Riccobene G., Bonacorso A., Leto G., Aurnia S. Distributed fiber optic sensing observations at Etna volcano, Italy: An integrated vision // XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG), Berlin, 11–20 July 2023. https://doi.org/10.57757/IUGG23-4747

Karamzadeh N., Gao Y.-J., Azzola J., Forbriger T., Widmer-Schnidrig R., Gaucher E., Rietbrock A. Local earthquake recordings using Distributed Acoustic Sensing (DAS) at BFO // EGU General Assembly 2023, Vienna, 23–28 April 2023. EGU23-16307. https://doi.org/10.5194/egusphere-egu23-16307

Kimura T. Potential for real-time tsunami monitoring using DAS technology // JpGU–AGU Joint Meeting 2017. Id. H-DS16-P01. 16 p. URL: https://www2.jpgu.org/meeting/2017/PDF2017/H-DS16_P_e.pdf

Kislov K., Gravirov V. Seismic signals and wind noise // CTBT S&T Conference. 2013. Id. T1-P51. URL: https://www.researchgate.net/publication/275213927_Seismic_Signals_and_Wind_Noise

Kislov K.V., Gravirov V.V. Acquisition of seismological data using fiber optic communication lines // XIV Conference and School “Problems of Geocosmos–2022”, St. Petersburg, 3–7 October 2022. Id. GC2022-SG008. URL: geo.phys.spbu.ru/geocosmos/2022/data/data/htmls/SG/GC2022-SG008.html

Kiyashchenko D., Mateeva A., Duan Y., Johnson D., Pugh J., Geisslinger A., Lopez J. Frequent 4D monitoring with DAS 3D VSP in deep water to reveal injected water-sweep dynamics // The Leading Edge. 2020. V. 39, Iss. 7. P.471–479. https://doi.org/10.1190/tle39070471.1

Landrø M. Using DAS-fibres at ocean floor and lunar surface // EGU General Assembly 2023, Vienna, 23–28 April 2023. EGU23-2091. https://doi.org/10.5194/egusphere-egu232091

Landrø M., Bouffaut L., Kriesell H.J., Potter J.R., Rørstadbotnen R.A., Taweesintananon K., Jo-hansen S.E., Brenne J.K., Haukanes A., Schjelderup O., Storvik F. Sensing whales, storms, ships and earthquakes using an Arctic fibre optic cable // Sci. Rep. 2022. V. 12. Art. 19226. 10 p. https://doi.org/10.1038/s41598-022-23606-x

Lellouch A., Biondi B.L. Seismic applications of downhole DAS // Sensors. 2021. V. 21, Iss. 9. Art. 2897. 21 p. https://doi.org/10.3390/s21092897

Lellouch A., Yuan S., Spica Z., Biondi B., Ellsworth W.L. Seismic velocity estimation using pas-sive downhole distributed acoustic sensing records: Examples from the San Andreas Fault Observatory at depth // J. Geophys. Res. Solid Earth. 2019. V. 124, Iss. 7. P.6931–6948. https://doi.org/

10.1029/2019JB017533

Li J., Kim T., Lapusta N., Biondi E., Zhan Zh. The break of earthquake asperities imaged by dis-tributed acoustic sensing // Nature. 2023. V. 620. P.800–806. https://doi.org/10.1038/s41586-023-06227-w

Li Z., Shen Zh., Yang Y., Williams E., Wang X., Zhan Zh. Rapid response to the 2019 Ridgecrest earthquake with distributed acoustic sensing // AGU Advances. 2021. V. 2, Iss. 2. Art. e2021AV000395. 9 p. https://doi.org/10.1029/2021AV000395

Liang J., Wang Zh., Lu B., Wang X., Li L., Ye Q., Qu R., Cai H. Distributed acoustic sensing for 2D and 3D acoustic source localization // Optics Letters. 2019. V. 44, Iss. 7. P.1690–1693. https://doi.org/10.1364/OL.44.001690

Lindsey N.J., Martin E.R., Dreger D.S., Freifeld B., Cole S., James S.R., Biondi B.L., Ajo-Franklin J.B. Fiber-optic network observations of earthquake wavefields // Geophys. Res. Lett. 2017. V. 44, Iss. 23. P.11792–11799. https://doi.org/10.1002/2017GL075722

Lindsey N.J., Rademacher H., Ajo-Franklin J.B. On the broadband instrument response of fiber-optic DAS arrays // J. Geophys. Res. Solid Earth. 2020. V. 125, Iss. 2. Art. e2019JB018145. 16 p. https://doi.org/10.1029/2019JB018145

Lior I., Sladen A., Rivet D., Ampuero J.-P., Hello Y., Lamare P., Jestin C., Tsagkli S., Markou C. On the detection capabilities of underwater DAS // ESS Open Archive. September 17, 2020. 29 p. https://doi.org/10.1002/essoar.10504330.1

Lior I., Sladen A., Mercerat D., Ampuero J.-P., Rivet D., Sambolian S. Strain to ground motion conversion of DAS data for earthquake magnitude and stress drop determination // Solid Earth Discussions. Preprint. 2021a. 30 p. https://doi.org/10.5194/se-2020-219

Lior I., Sladen A., Rivet D., Ampuero J.-P., Hello Y., Becerril C., Martins H.F., Lamare P., Jestin C., Tsagkli S., Markou C. On the detection capabilities of underwater distributed acoustic sensing // J. Geophys. Res. Solid Earth. 2021b. V. 126, Iss. 3. Art. e2020JB020925. 20 p. https://doi.org/10.1029/2020jb020925

Lior I., Rivet D., Ampuero J.-P., Sladen A., Barrientos S., Sánchez-Olavarría R., Villarroel Opazo G.A., Bustamante Prado J.A. Magnitude estimation and ground motion prediction to harness fiber optic distributed acoustic sensing for earthquake early warning // EGU General Assembly 2023, Vienna, 23–28 April 2023. EGU23-13803. https://doi.org/10.5194/egusphere-egu23-13803

Liu C., Zhang P., Shang J., Yao D., Wu R., Ou Y., Tian Y. Comprehensive research on the failure evolution of the floor in upper mining of deep and thick coal seam // J. Appl. Geophys. 2022. V. 206. Art. 104774. https://doi.org/10.1016/j.jappgeo.2022.104774

Matias L., Carrilho F., Sá V., Omira R., Niehus M., Corela C., Barros J., Omar Y. The contribu-tion of submarine optical fiber telecom cables to the monitoring of earthquakes and tsunamis in the NE Atlantic // Front. Earth Sci. 2021. V. 9. Art. 611. https://doi.org/10.3389/feart.2021.686296

Matsumoto H., Araki E., Kimura T., Fujie G., Shiraishi K., Tonegawa T., Obana K., Arai R., Kaiho Y., Nakamura Y., Yokobiki T., Kodaira S., Takahashi N., Ellwood R., Yartsev V., Karrenbach M. Detection of hydroacoustic signals on a fiber-optic submarine cable // Sci. Rep. 2021a. V. 11. Art. 2797. 12 p. https://doi.org/10.1038/s41598-021-82093-8

Matsumoto H., Araki E., Kimura T., Fujie G., Shiraishi K., Tonegawa T., Obana K., Arai R., Kaiho Y., Nakamura Y., Yokobiki T., Kodaira S., Takahashi N., Ellwood R., Yartsev V., Karrenbach M. Hydroacoustic observations using Distributed Acoustic Sensing technology on a fiber-optic submarine cable // CTBT: Scientific and Technology Conference SnT 2021. 2021b. Poster P3.1-293. URL: https://conferences.ctbto.org/event/7/contributions/1035/attachments/339/843/P3.1-293Matsumoto.pdf

Min R., Liu Zh., Pereira L., Yang Ch., Sui Q., Marques C. Optical fiber sensing for marine envi-ronment and marine structural health monitoring: A review // Opt. Laser Technol. 2021. V. 140. Art. 107082. https://doi.org/10.1016/j.optlastec.2021.107082

Mohamad H., Tee B.P., Chong M.F., Ang K.A., Rashid A.S.A., Abdullah R.A. Instrumented later-ally loaded pile test using distributed fibre optic sensor // Geotech. Eng. J. SEAGS & AGSSEA. 2019. V. 50, N 2. P.36–42.

Moradi P., Angus D.A., Sharma M. Hydraulic fracture width inversion using simultaneous downhole tiltmeter and distributed acoustic sensing data // SPE Hydraulic Fracturing Tech-nology Conference and Exhibition, The Woodlands, TX, 1–3 February 2022. Paper SPE-209149-MS. https://doi.org/10.2118/209149-MS

Naldrett G., Parker T., Shatalin S., Mondanos M., Farhadiroushan M. High-resolution Carina distributed acoustic fibre optic sensor for permanent reservoir monitoring and extending the reach into subsea fields // First Break. 2020. V. 38, Iss. 2. P.71–76. https://doi.org/10.3997/1365-2397.fb2020012

Näsholm S.P., Iranpour K., Wuestefeld A., Dando B.D.E., Baird A.F., Oye V. Array signal pro-cessing on distributed acoustic sensing data: Directivity effects in slowness space // J. Ge-ophys. Res. Solid Earth. 2022. V. 127, Iss. 2. Art. e2021JB023587. 24 p. https://doi.org/10.1029/2021JB023587

Nishimura T., Emoto K., Nakahara H., Miura S., Yamamoto M., Sugimura S., Ishikawa A., Ki-mura T. Source location of volcanic earthquakes and subsurface characterization using fi-ber-optic cable and distributed acoustic sensing system // Sci. Rep. 2021. V. 11. Art. 6319. 12 p. https://doi.org/

10.1038/s41598-021-85621-8

Nosov M.A., Moshenceva A.V., Kolesov S.V. Horizontal motions of water in the vicinity of a tsunami source // Pure Appl. Geophys. 2013. V. 170, Iss. 9–10. P.1647–1660. https://doi.org/10.1007/s00024-012-0605-2

Oskoui E.A., Taylor T., Ansari F. Reference-free dynamic distributed monitoring of damage in multispan bridges // J. Struct. Eng. 2020. V. 147, N 1. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002858

Paitz P., Edme P., Gräff D., Walter F., Doetsch J., Chalari A., Schmelzbach C., Fichtner A. Em-pirical investigations of the instrument response for distributed acoustic sensing (DAS) across 17 octaves // Bull. Seismol. Soc. Amer. 2021. V. 111, N 1. P.1–10. https://doi.org/10.1785/0120200185

Piao Ch., Lei Sh., Yang J., Sang L. Experimental study on the movement and evolution of over-burden strata under reamer-pillar coal mining based on distributed optical fiber monitoring // Energies. 2019. V. 12, Iss. 1. Art. 77. 12 p. https://doi.org/10.3390/en12010077

Puruncajas B., Vidal Y., Tutivén C. Vibration-response-only structural health monitoring for off-shore wind turbine jacket foundations via convolutional neural networks // Sensors. 2020. V. 20, Iss. 12. Art. 3429. 19 p. https://doi.org/10.3390/s20123429

Rao Y., Wang Z., Wu H., Ran Z., Han B. Recent advances in phase-sensitive optical time domain reflectometry (Ф-OTDR) // Photonic Sensors. 2021. V. 11. P. 1–30. https://doi.org/10.1007/s13320-021-0619-4

Rivet D., de Cacqueray B., Sladen A., Roques A., Calbris G. Preliminary assessment of ship de-tection and trajectory evaluation using distributed acoustic sensing on an optical fiber tele-com cable // J. Acoust. Soc. Amer. 2021. V. 149, Iss. 4. P.2615–2627. https://doi.org/10.1121/10.0004129

Rivet D., Baillet M., Trabattoni A., van den Ende M., Vernet C., Lior I., Barrientos S., Sladen A., Ampuero J.-P. Improving active faults monitoring leveraging submarine telecom fiber-optic cables: First results from central Chile // EGU General Assembly 2023, Vienna, 23–28 April 2023. EGU23-13207. https://doi.org/10.5194/egusphere-egu23-13207

Romanowicz B., Allen R., Brekke K., Chen L.-W., Gou Y., Henson I., Marty J., Neuhauser D., Pardini B., Taira T., Thompson S., Zhang J., Zuzlewski S. SeaFOAM: A year-long DAS de-ployment in Monterey Bay, California // Seismol. Res. Lett. 2023. V. 94, N 5. P.2348–2359. https://doi.org/10.1785/0220230047

Shang Y., Sun M., Wang Ch., Yang J., Du Y., Yi J., Zhao W., Wang Y., Zhao Y., Ni J. Research progress in distributed acoustic sensing techniques // Sensors. 2022. V. 22, Iss. 16. Art. 6060. 31 p. https://doi.org/10.3390/s22166060

Shao J., Wang Y., Zhang Ch., Zhang X., Zhang Y. Near-surface structure investigation using am-bient noise in the water environment recorded by fiber-optic distributed acoustic sensing // Remote Sensing. 2023. V. 15, Iss. 13. Art. 3329. 17 p. https://doi.org/10.3390/rs15133329

Shinohara M., Yamada T., Akuhara T., Mochizuki K., Sakai S. Performance of seismic observa-tion by distributed acoustic sensing technology using a seafloor cable off Sanriku, Japan // Front. Marine Sci. 2022. V. 9. Art. 844506. 13 p. https://doi.org/10.3389/fmars.2022.844506

Shuvalov A.A., Pnev A.B., Ignatev V.I., Zhirnov A.A., Chernutsky A.O., Nesterov E.T. Possibility of distributed acoustic sensing (DAS) for geophysical problems solution // Engineering and Mining Geophysics, Almaty, 23–27 April 2018. V. 2018. P.1–7. https://doi.org/10.3997/2214-4609.201800591

Sladen A., Rivet D., Ampuero J.-P., De Barros L., Hello Y., Calbris G., Lamare P. Distributed sensing of earthquakes and ocean–solid Earth interactions on seafloor telecom cables // Nat. Commun. 2019. V. 10. Art. 5777. 8 p. https://doi.org/10.1038/s41467-019-13793-z

Smolinski K., Paitz P., Bowden D., Edme P., Kugler F., Fichtner A. Urban distributed acoustic sensing using in-situ fibre beneath Bern, Switzerland // EGU General Assembly 2020 (online), 4–8 May 2020. EGU2020-8225. https://doi.org/10.5194/egusphere-egu2020-8225

Soga K., Luo L. Distributed fiber optics sensors for civil engineering infrastructure sensing // J. Struct. Integr. Maint. 2018. V. 3, Iss. 1. P.1–21. https://doi.org/10.1080/24705314.2018.1426138

Song A., Ren J., Liu A., Zhang G., Lei X., Zhang H. Distributed acoustic sensing based on micro-tremor survey method for near-surface active faults exploration: A case study in Datong Ba-sin, China // Int. J. Environ. Res. Public Health. 2023. V. 20, Iss. 4. Art. 2915. 18 p. https://doi.org/10.3390/ijerph20042915

Spica Z.J., Nishida K., Akuhara T., Pétrélis F., Shinohara M., Yamada T. Marine sediment char-acterized by ocean-bottom fiber-optic seismology // Geophys. Res. Lett. 2020a. V. 47, Iss. 16. Art. e2020GL088360. 10 p. https://doi.org/10.1029/2020GL088360

Spica Z.J., Perton M., Martin E.R., Beroza G.C., Biondi B. Urban seismic site characterization by fiber-optic seismology // J. Geophys. Res. Solid Earth. 2020b. V. 125, Iss. 3. Art. e2019JB018656. 14 p. https://doi.org/10.1029/2019JB018656

Sun B.Y., Zhang P.S., Wu R.X., Guo L.Q. Dynamic detection and analysis of overburden defor-mation and failure in a mining face using distributed optical fiber sensing //J. Geophys. Eng. 2018. V. 15, Iss. 6. P.2545–2555. https://doi.org/10.1088/1742-2140/aad1c6

Tang B., Cheng H. Application of distributed optical fiber sensing technology in surrounding rock deformation control of TBM-excavated coal mine roadway // J. Sensors. 2018. V. 2018. Art. 8010746. 11 p. https://doi.org/10.1155/2018/8010746

Taweesintananon K., Landrø M., Brenne J.K., Haukanes A. Distributed acoustic sensing for near-surface imaging using submarine telecommunication cable: A case study in the Trond-heim fjord, Norway // Geophysics. 2021. V. 86, Iss. 5. P.B303–B320. https://doi.org/10.1190/geo2020-0834.1

The DAS Research Coordination Network – DAS RCN. URL: https://www.iris.edu/hq/initiatives/

das_rcn [Access date: 09.12.2023].

Titov A., Binder G., Liu Y., Jin G., Simmons J., Tura A., Monk D., Byerley G., Yates M. Modeling and interpretation of scattered waves in interstage distributed acoustic sensing vertical seis-mic profiling survey // Geophysics. 2021. V. 86, Iss. 2. P.D93–D102. https://doi.org/10.1190/geo2020-0293.1

Trabattoni A., Festa G., Longo R., Bernard P., Plantier G., Zollo A., Strollo A. Microseismicity monitoring and site characterization with distributed acoustic sensing (DAS): The case of the Irpinia fault system (Southern Italy) // J. Geophys. Res. Solid Earth. 2022. V. 127, Iss. 9. Art. e2022JB024529. 14 p. https://doi.org/10.1029/2022JB024529

Trafford A., Ellwood R., Wacquier L., Godfrey L., Minto C., Coughlan M., Donohue S. Distribut-ed acoustic sensing for active offshore shear wave profiling // Sci. Rep. 2022. V. 12. Art. 9691. 11 p. https://doi.org/10.1038/s41598-022-13962-z

Tsunami early warning system using available seafloor fiber cables: Aragon Photonics. SAFE Project. URL: https://aragonphotonics.com/safe-project/ [Access date: 25.09.2023].

Turov A.T., Konstantinov Yu.A., Barkov F.L., Korobko D.A., Zolotovskii I.O., Lopez-Mercado C.A., Fotiadi A.A. Enhancing the distributed acoustic sensors’ (DAS) performance by the simple noise reduction algorithms sequential application // Algorithms. 2023a. V. 16, Iss. 5. Art. 217. 15 p. https://doi.org/10.3390/a16050217

Turov A.T., Barkov F.L., Belokrylov M.E., Claude D., Konstantinov Yu.A. Investigation of signal reception–transmission parameters in a distributed acoustic sensor // Instrum. Exp. Tech. 2023b. V. 66, Iss. 5. P.802–808. https://doi.org/10.1134/S0020441223050263

Turov A.T., Barkov F.L., Konstantinov Yu.A., Korobko D.A., Lopez-Mercado C.A., Fotiadi A.A. Activation function dynamic averaging as a technique for nonlinear 2D data denoising in distributed acoustic sensors // Algorithms. 2023c. V. 16, Iss. 9. Art. 440. 18 p. https://doi.org/10.3390/a16090440

Ugalde A., Becerril C., Villaseñor A., Ranero C.R., Fernández-Ruiz M.R., Martin-Lopez S., Gon-zález‐Herráez M., Martins H.F. Noise levels and signals observed on submarine fibers in the Canary Islands using DAS // Seismol. Res. Lett. 2021. V. 93, N 1. P.351–363. https://doi.org/10.1785/0220210049

van den Ende M.P.A., Ampuero J.-P. Evaluating seismic beamforming capabilities of distributed acoustic sensing arrays // Solid Earth. 2021. V. 12, Iss. 4. P.915–934. https://doi.org/10.5194/se-12-915-2021

Viens L., Spica Z.J., Delbridge B.G., Arbic B.K. Monitoring shelf sea dynamics with ocean-bottom distributed acoustic sensing // ESS Open Archive. March 16, 2023. 16 p. https://doi.org/10.22541/essoar.167898504.40579102/v1

Walter F., Gräff D., Lindner F., Paitz P., Köpfli M., Chmiel M., Fichtner A. Distributed acoustic sensing of microseismic sources and wave propagation in glaciated terrain // Nat. Commun. 2020. V. 11. Art. 2436. 10 p. https://doi.org/10.1038/s41467-020-15824-6

Wang H.F., Zeng X., Miller D.E., Fratta D., Feigl K.L., Thurber C.H., Mellors R.J. Ground mo-tion response to an ML 4.3 earthquake using co-located distributed acoustic sensing and seismometer arrays // Geophys. J. Int. 2018. V. 213, Iss. 3. P.2020–2036. https://doi.org/10.1093/gji/ggy102

Wang Z.N., Zeng J.J., Li J., Fan M.Q., Wu H., Peng F., Zhang L., Zhou Y., Rao Y.J. Ultra-long phase-sensitive OTDR with hybrid distributed amplification // Optics Letters. 2014. V. 39, Iss. 20. P.5866–5869. https://doi.org/10.1364/OL.39.005866

Wassermann J., Braun T., Ripepe M., Bernauer F., Guattari F., Igel H. The use of 6DOF meas-urement in volcano seismology – A first application to Stromboli volcano // J. Volcanol. Geotherm. Res. 2022. V. 424. Art. 107499. https://doi.org/10.1016/j.jvolgeores.2022.107499

Williams E.F., Fernández-Ruiz M.R., Magalhaes R., Vanthillo R., Zhan Zh., González-Herráez M., Martins H.F. Distributed sensing of microseisms and teleseisms with submarine dark fibers // Nat. Commun. 2019. V. 10. Art. 5778. 11 p. https://doi.org/10.1038/s41467-019-13262-7

Williams E.F., Ugalde A., Martins H.F., Becerril C.E., Callies J., Claret M., Fernandez-Ruiz M.R., Gonzalez-Herraez M., Martin-Lopez S., Pelegri J.L., Winters K.B., Zhan Z. Fiber-optic observations of internal waves and tides // J. Geophys. Res. Oceans. 2023. V. 128, Iss. 9. Art. e2023JC019980. https://doi.org/10.1029/2023JC019980

Wuestefeld A., Weinzierl W. Design considerations for using distributed acoustic sensing for cross-well seismics: A case study for CO2 storage // Geophys. Prospect. 2020. V. 68, Iss. 6. P.1893–1905. https://doi.org/10.1111/1365-2478.12965

Wuestefeld A., Spica Z.J., Aderhold K., Huang H.-H., Ma K.-F., Lai V.H., Miller M., Urmantseva L., Zapf D., Bowden D.C., Edme P., Kiers T., Rinaldi A.P., Tuinstra K., Jestin C., Diaz-Meza S., Jousset Ph., Wollin C., Ugalde A., Ruiz Barajas S., Gaite B., Currenti G., Prestifilippo M., Araki E., Tonegawa T., de Ridder S., Nowacki A., Lindner F., Schoenball M., Wetter C., Zhu H. H., Baird A.F., Rørstadbotnen R.A., Ajo-Franklin J., Ma Y., Abbott R.E., Hodgkinson K.M., Porritt R.W., Stanciu C., Podrasky A., Hill D., Biondi B., Yuan S., Luo B., Nikitin S., Morten J.P., Dumitru V.-A., Lienhart W., Cunningham E., Wang H. The Global DAS Month of February 2023 // Seismol. Res. Lett. 2023. [in press]. https://doi.org/10.1785/0220230180

Yin J., Zhu W., Li J., Biondi E., Miao Y., Spica Z.J., Viens L., Shinohara M., Ide S., Mochizuki K., Husker A.L., Zhan Zh. Earthquake magnitude with DAS: A transferable data-based scal-ing relation // Geophys. Res. Lett. 2023. V. 50, Iss. 10. Art. e2023GL103045. 11 p. https://doi.org/

10.1029/2023GL103045

Yu J., Xu P., Yu Zh., Wen K., Yang J., Wang Y., Qin Y. Principles and applications of seismic monitoring based on submarine optical cable // Sensors. 2023. V. 23, Iss. 12. Art. 5600. 15 p. https://doi.org/10.3390/s23125600

Yuan Q., Chai J., Ren Y., Liu Y. The characterization pattern of overburden deformation with distributed optical fiber sensing: An analogue model test and extensional analysis // Sensors. 2020. V. 20, Iss. 24. Art. 7215. 20 p. https://doi.org/10.3390/s20247215

Yuan Q., Chai J., Zhang Y., Liu Y., Ren Y. Investigation of deformation pattern and movement law of the huge-thick conglomerate stratum by a large-scale 3D model test with distributed optical fiber sensor monitoring // Sensors. 2021. V. 21, Iss. 17. Art. 5985. 23 p. https://doi.org/10.3390/s21175985

Zhang D., Wang J., Zhang P., Shi B. Internal strain monitoring for coal mining similarity model based on distributed fiber optical sensing // Measurement. 2017. V. 97. P.234–241. https://doi.org/10.1016/j.measurement.2016.11.017