DETECTION OF THE ACOUSTIC SIGNALS IN THE INFRASOUND RANGE FROM EXPLOSIVE VOLCANIC ERUPTIONS OF KAMCHATKA AND THE NORTHERN KURIL ISLANDS
Kamchatka Branch of the Geophysical Survey of the Russian Academy of Sciences
Journal: Geophysical research
Tome: 25
Number: 3
Year: 2024
Pages: 29-47
UDK: 004+534.6
DOI: 10.21455/gr2024.3-2
Show citation
Droznin
S.Ya D.V. DETECTION OF THE ACOUSTIC SIGNALS IN THE INFRASOUND RANGE FROM EXPLOSIVE VOLCANIC ERUPTIONS OF KAMCHATKA AND THE NORTHERN KURIL ISLANDS
// . 2024. Т. 25. № 3. С. 29-47. DOI: 10.21455/gr2024.3-2
@article{Droznin
S.YaDETECTION2024,
author = "Droznin
S.Ya, D. V.",
title = "DETECTION OF THE ACOUSTIC SIGNALS IN THE INFRASOUND RANGE FROM EXPLOSIVE VOLCANIC ERUPTIONS OF KAMCHATKA AND THE NORTHERN KURIL ISLANDS
",
journal = "Geophysical research",
year = 2024,
volume = "25",
number = "3",
pages = "29-47",
doi = "10.21455/gr2024.3-2",
language = "English"
}
Copy link
Copy BibTex
Keywords: volcanic acoustic signal, infrasound, automatic detection, signal processing, volcano monitoring
Аnnotation: Explosive volcanic eruptions are accompanied by infrasound wave disturbances in the atmosphere, which can propagate over large distances. Recognition of such signals is of great interest, and infrasound monitoring in combination with other methods can be used to improve the efficiency of volcanic hazard assessment.
Kamchatka Branch of the Geophysical Survey of the Russian Academy of Sciences (KB GS RAS) has developed an algorithm and software based on the “beamforming” method for automatic processing of infra-sound group records, which helps solve the main task of operational monitoring of volcanic hazard – identifying explosive eruptions in a near-real time mode. The specified software has been implemented in the volcanic ac-tivity monitoring service since 2022. Currently, infrasound monitoring, together with other remote sensing meth-ods (seismic, satellite and video surveillance), is used for the prompt assessment of the state of volcanoes on the Kamchatka Peninsula and the Alaid and Ebeko volcanoes (Northern Kuril Islands). Its results are posted on the official website of the Kamchatka Branch of the GS RAS in the form of a time distribution of azimuths to the source, indicating the signal amplitude and its apparent velocity, and are updated every 30 minutes. Software debugging was carried out using data from the IS44 infrasound station (Nachiki, the Kamchatka Peninsula). In-formation was analyzed for the period from 2010 to 2022 and the capabilities of automatic detection were assessed.
To assess the efficiency and reliability of infrasound monitoring, the results of signal recording from the eruptions of the Bezymyanny and Karymsky volcanoes, located 370 and 155 km from the IS44 station, respectively, were studied. The triggering of the automatic system was experimentally confirmed based on the infrasound station data for all eruptions of Bezymyanny volcano, when the height of ash-gas emissions reached 7 km above sea level and higher. For Karymsky volcano, the detector triggered at a height of ash-gas emissions from 4 km above sea level and higher.
Bibliography: Asming V.E., Vinogradov Y.A., Voronin A.I., Fedorov A.V., Chigerev E.N., Roskin O.K., Determining places of falling of launch vehicle fragments using infrasonic observations, Izvestiya, Atmospheric and Oceanic Physics, 2016, vol. 52, no. 6, pp. 629-636. https://doi.org/10.1134/S0001433816060037
Asming V.E., Fedorov A.V., Vinogradov Yu.A., Chebrov D.V., Baranov S.V., Fedorov I.S., Fast infrasonic event detector and its application, Geofizicheskie issledovanija (Geophysical Research), 2021, vol. 22, no. 1, pp. 54-67. [In Russian]. doi: 10.21455/gr2021.1-4
Bliznetsov V.E., Senyukov S.L., ADAP software for automatic detection of ash emission at active volcanoes and calculations of ash plume height using seismological data, Seismic Instruments, 2016, vol. 52, no. 1, pp. 32-42.
Brachet N., Brown D., Le Bras R., Cansi Y., Mialle P., Coyne J., Monitoring the Earth’s Atmosphere with the Global IMS Infrasound Network, in Infrasound Monitoring for Atmospheric Studies, Dordrecht, Springer, 2010, pp. 77-118. https://doi.org/10.1007/978-1-4020-9508-5_3
Droznin D.V., Shapiro N.M., Droznina S.Ya., Senyukov S.L., Chebrov V.N., Gordeev E.I., Detecting and locating volcanic tremors on the Klyuchevskoy group of volcanoes (Kamchatka) based on correlations of contin-uous seismic records, Geophysical Journal International, 2015, vol. 203, no. 2, pp. 1001-1010.
Fedorov A.V., Fedorov I.S., Voronin A.I., Registration of snow avalanches using the seismic-infrasound method, in Sovremennyye metody obrabotki i interpretatsii seysmologicheskikh dannykh: materialy XIII Mezhdu-narodnoy seysmologicheskoy shkoly (Modern methods of processing and interpretation of seismological data: XIII International Seismological School), Obninsk, FRC GS RAS, 2018, pp. 273-276.
[In Russian].
Firstov P.P., Vulkanicheskie akusticheskie signaly diapazona 1.0–10 Gts v atmosfere i ikh svyaz' s eksplozivnym protsessom (Volcanic acoustic signals in the range of 1.0–10 Hz in the atmosphere and their connection with the explosive process), Petropavlovsk-Kamchatsky, KGPU, 2003, 89 p. [In Russian].
Firstov P.P., Dynamics of volcanic eruptions and its manifestation in shock wave and acoustic effects in the atmosphere, Extended Abstract of Doctoral Sci. (Phys.-Math) Dissertation, Yuzhno-Sakhalinsk, Institute of Marine Geology and Geophysics DVO RAN, 2010, 41 p. [In Russian].
Gordeev E.I., Firstov P.P., Kulichkov S.N., Makhmudov E.R., Infrasonic waves from volcanic eruptions on the Kamchatka peninsula, Izvestiya, Atmospheric and Oceanic Physics, 2013, vol. 49, no. 4, pp. 420-431.
Le Pichon A., Pilger C., Ceranna L., Marchetti E., Lacanna G., Souty V., Vergoz J., Listowski C., Hernandez B., Mazet-Roux G., Dupont A., Hereil P., Using dense seismo-acoustic network to provide timely warning of the 2019 paroxysmal Stromboli eruptions, Scientific Reports, 2021, vol. 11, 14464.
Makhmudov E.R., Firstov P.P., Budilov D.I., KamIn information system for monitoring wave perturbations in the atmosphere on the Kamchatka Peninsula, Seismic Instruments, 2017, vol. 53, no. 1, pp. 60-69.
Matoza R.S., Le Pichon A., Vergoz J., Herry P., Lalande J., Lee H., Che Il-Y., Rybin A., Infrasonic observations of the June 2009 Sarychev Peak eruption, Kuril Islands: Implications for infrasonic monitoring of remote explosive volcanism, Journal of Volcanology and Geothermal Research, 2010, vol. 200, no. 1-2, pp. 35-48. https://doi.org/10.1016/j.jvolgeores.2010.11.022
Matoza R., Fee D., Green D., Mialle P., Volcano Infrasound and the International Monitoring System, in Infra-sound Monitoring for Atmospheric Studies, Switzerland, Springer Nature, 2019, pp. 1023-1077.
Schweitzer J., Fyen J., Mykkeltveit S., Gibbons S.J., Pirli M., Kühn D., Kværna T., Seismic Arrays, in New Manual of Seismological Observatory Practice 2 (NMSOP-2), Potsdam, Deutsches GeoForschungsZentrum GFZ, 2012, pp. 1-80. https://doi.org/10.2312/GFZ.NMSOP-2_ch9
Senyukov S.L., Monitoring of Kamchatka volcanoes activity using remote observation means in 2000–2004, Vulkanologiya i seysmologiya (Volcanology and seismology), 2006, no. 3, pp. 68-78. [In Russian].
Senyukov S.L., Droznina S.Ya., Kozhevnikova T.Yu., Experience of the detection of ash plume and estimation its height using local seismicity for Kamchatka volcanoes during 2003–2011 (Kamchatka Peninsula, Rus-sia), in Complex monitoring of volcanic activity: methods and results, New York, Nova Science Publishers Inc., 2013, pp. 35-52.
Van Tees H.L., Detection, Estimation and Modulation Theory. Part I, New York, Wiley, 1968, 1151 p.
Vinogradov Y.A., Asming V.E., Baranov S.V., Fedorov A.V., Vinogradov A.N., Seismic and infrasonic monitor-ing of glacier destruction: A pilot experiment on Svalbard, Seismic Instruments, 2015, vol. 51, no. 1, pp. 1-7. https://doi.org/10.3103/S0747923915010119
Watson L.M., Iezzi A.M., Toney L., Maher S.P., Fee D., McKee K., Ortiz H.D., Matoza R.S., Gestrich J.E., Bishop J.W., Witsil A., Anderson J.F., Johnson J.B., Volcano infrasound: progress and future directions, Bulletin of Volcanology, 2022, vol. 84, 13 p. https://doi.org/10.1007/s00445-022-01544-w
Williams R.A., Perttu A., Taisne B., Processing of volcano infrasound using film sound audio post-production techniques to improve signal detection via array processing, Geoscience Letters, 2020, vol. 7, 13 p.
Asming V.E., Fedorov A.V., Vinogradov Yu.A., Chebrov D.V., Baranov S.V., Fedorov I.S., Fast infrasonic event detector and its application, Geofizicheskie issledovanija (Geophysical Research), 2021, vol. 22, no. 1, pp. 54-67. [In Russian]. doi: 10.21455/gr2021.1-4
Bliznetsov V.E., Senyukov S.L., ADAP software for automatic detection of ash emission at active volcanoes and calculations of ash plume height using seismological data, Seismic Instruments, 2016, vol. 52, no. 1, pp. 32-42.
Brachet N., Brown D., Le Bras R., Cansi Y., Mialle P., Coyne J., Monitoring the Earth’s Atmosphere with the Global IMS Infrasound Network, in Infrasound Monitoring for Atmospheric Studies, Dordrecht, Springer, 2010, pp. 77-118. https://doi.org/10.1007/978-1-4020-9508-5_3
Droznin D.V., Shapiro N.M., Droznina S.Ya., Senyukov S.L., Chebrov V.N., Gordeev E.I., Detecting and locating volcanic tremors on the Klyuchevskoy group of volcanoes (Kamchatka) based on correlations of contin-uous seismic records, Geophysical Journal International, 2015, vol. 203, no. 2, pp. 1001-1010.
Fedorov A.V., Fedorov I.S., Voronin A.I., Registration of snow avalanches using the seismic-infrasound method, in Sovremennyye metody obrabotki i interpretatsii seysmologicheskikh dannykh: materialy XIII Mezhdu-narodnoy seysmologicheskoy shkoly (Modern methods of processing and interpretation of seismological data: XIII International Seismological School), Obninsk, FRC GS RAS, 2018, pp. 273-276.
[In Russian].
Firstov P.P., Vulkanicheskie akusticheskie signaly diapazona 1.0–10 Gts v atmosfere i ikh svyaz' s eksplozivnym protsessom (Volcanic acoustic signals in the range of 1.0–10 Hz in the atmosphere and their connection with the explosive process), Petropavlovsk-Kamchatsky, KGPU, 2003, 89 p. [In Russian].
Firstov P.P., Dynamics of volcanic eruptions and its manifestation in shock wave and acoustic effects in the atmosphere, Extended Abstract of Doctoral Sci. (Phys.-Math) Dissertation, Yuzhno-Sakhalinsk, Institute of Marine Geology and Geophysics DVO RAN, 2010, 41 p. [In Russian].
Gordeev E.I., Firstov P.P., Kulichkov S.N., Makhmudov E.R., Infrasonic waves from volcanic eruptions on the Kamchatka peninsula, Izvestiya, Atmospheric and Oceanic Physics, 2013, vol. 49, no. 4, pp. 420-431.
Le Pichon A., Pilger C., Ceranna L., Marchetti E., Lacanna G., Souty V., Vergoz J., Listowski C., Hernandez B., Mazet-Roux G., Dupont A., Hereil P., Using dense seismo-acoustic network to provide timely warning of the 2019 paroxysmal Stromboli eruptions, Scientific Reports, 2021, vol. 11, 14464.
Makhmudov E.R., Firstov P.P., Budilov D.I., KamIn information system for monitoring wave perturbations in the atmosphere on the Kamchatka Peninsula, Seismic Instruments, 2017, vol. 53, no. 1, pp. 60-69.
Matoza R.S., Le Pichon A., Vergoz J., Herry P., Lalande J., Lee H., Che Il-Y., Rybin A., Infrasonic observations of the June 2009 Sarychev Peak eruption, Kuril Islands: Implications for infrasonic monitoring of remote explosive volcanism, Journal of Volcanology and Geothermal Research, 2010, vol. 200, no. 1-2, pp. 35-48. https://doi.org/10.1016/j.jvolgeores.2010.11.022
Matoza R., Fee D., Green D., Mialle P., Volcano Infrasound and the International Monitoring System, in Infra-sound Monitoring for Atmospheric Studies, Switzerland, Springer Nature, 2019, pp. 1023-1077.
Schweitzer J., Fyen J., Mykkeltveit S., Gibbons S.J., Pirli M., Kühn D., Kværna T., Seismic Arrays, in New Manual of Seismological Observatory Practice 2 (NMSOP-2), Potsdam, Deutsches GeoForschungsZentrum GFZ, 2012, pp. 1-80. https://doi.org/10.2312/GFZ.NMSOP-2_ch9
Senyukov S.L., Monitoring of Kamchatka volcanoes activity using remote observation means in 2000–2004, Vulkanologiya i seysmologiya (Volcanology and seismology), 2006, no. 3, pp. 68-78. [In Russian].
Senyukov S.L., Droznina S.Ya., Kozhevnikova T.Yu., Experience of the detection of ash plume and estimation its height using local seismicity for Kamchatka volcanoes during 2003–2011 (Kamchatka Peninsula, Rus-sia), in Complex monitoring of volcanic activity: methods and results, New York, Nova Science Publishers Inc., 2013, pp. 35-52.
Van Tees H.L., Detection, Estimation and Modulation Theory. Part I, New York, Wiley, 1968, 1151 p.
Vinogradov Y.A., Asming V.E., Baranov S.V., Fedorov A.V., Vinogradov A.N., Seismic and infrasonic monitor-ing of glacier destruction: A pilot experiment on Svalbard, Seismic Instruments, 2015, vol. 51, no. 1, pp. 1-7. https://doi.org/10.3103/S0747923915010119
Watson L.M., Iezzi A.M., Toney L., Maher S.P., Fee D., McKee K., Ortiz H.D., Matoza R.S., Gestrich J.E., Bishop J.W., Witsil A., Anderson J.F., Johnson J.B., Volcano infrasound: progress and future directions, Bulletin of Volcanology, 2022, vol. 84, 13 p. https://doi.org/10.1007/s00445-022-01544-w
Williams R.A., Perttu A., Taisne B., Processing of volcano infrasound using film sound audio post-production techniques to improve signal detection via array processing, Geoscience Letters, 2020, vol. 7, 13 p.