Geophysical research: article

I.V. Mikhaylov
O.V. Nechaev
V.N. Glinskikh
M.N. Nikitenko
A.A. Fedoseev
Trofimuk Institute of Petroleum Geology and Geophysics SB RAS
Journal: Geophysical research
Tome: 24
Number: 3
Year: 2023
Pages: 87-102
UDK: 550.837, 519.6, 551.34
DOI: 10.21455/gr2023.3-5
Full text
Keywords: electromagnetic monitoring, impulsed sounding, cross-borehole survey, geoelectric model, Sumudu transformation, vector finite element method, three-dimensional modeling, permafrost, man-triggered and environmental disaster.
Аnnotation: The study proposes a new approach to monitoring the state of permafrost under the bases of industrial facilities, aimed at timely prevention of man-triggered and environmental disasters. A stationary cross-borehole impulsed electromagnetic survey system is used, in which the transmitters and receivers of signals are sets of inductance coils located in different boreholes. Each two-coil sounding system includes a transmitter and a receiver located at the same depth. The mathematical description of electromagnetic monitoring is based on the Sumudu transformation with unique properties, which has not been widely used in solving problems of geoelectrodynamics. The algo-rithm of three-dimensional modeling of electromagnetic pulses by the vector finite element method is implemented in software. The original combination of the latter and Sumudu transformation makes it possible to effectively describe the spatial heterogeneity and high contrast of geoelectric parameters, significantly reducing computational costs. We consider a realistic geoelectric model of a fuel tank on permafrost with a talik of various sizes formed in it, which can cause deformation of the construction with negative consequences for the environment. The practical capabilities of the cross-borehole impulsed electromagnetic monitoring system are evaluated. The achieved level of the signals is sufficient for the practical implementation of a stationary system for cross-borehole measurements. Important advantages of the proposed approach are low labor costs for the deployment of the observation system and small operating costs for maintaining its operation. A conclusion was made based on the results of three-dimensional numerical simulation of the electro-magnetic signals that the electromagnetic monitoring system is sufficiently sensitive to the presence of a talik and an increase in its size.
Bibliography: Abou-Sayed A.S., Andrews D.E., Buhidma I.M., Evaluation of oily waste injection below the permafrost in Pru-dhoe Bay field, in proceedings of the SPE California Regional Meeting, Bakersfield, California, USA, April 5-7, USA, SPE of AIME, Richardson, 1989, 14 p. DOI: 10.2118/18757-MS

Al-Ali Z.A., Al-Buali M.H., AlRuwaili S., Ma S.M., Marsala A.F., Alumbaugh D., DePavia L., Levesque C., Nalonnil A., Zhang P., Hulme C., Wilt M., Looking deep into the reservoir, Oilfield Review, 2009, vol. 21, no. 2, pp. 38-47.

Bossavit A., Computational Electromagnetism: Variational Formulations, Complementarity, Edge Elements, San Diego, Academic Press, 1998, 352 p.

Briggs M.A., Campbell S., Nolan J., Walvoord M.A., Ntarlagiannis D., Day-Lewis F.D., Lane J.W., Surface geo-physical methods for characterising frozen ground in transitional permafrost landscapes, Permafrost and Periglacial Processes, 2016, vol. 28, pp. 52-65. DOI: 10.1002/ppp.1893

Chugaev A.V., Sanfirov I.A., Tarantin M.V., Cross-well reflection imaging at the Verkhnekamskoe potassium salt deposit, Russian Geology and Geophysics, 2023, vol. 64, no. 2, pp. 243-255.

Epov M.I., Nechaev O.V., Glinskikh V.N., Numerical inversion of the Sumudu integral transform in the simula-tion of electromagnetic sounding of the Earth’s interior, Russian Geology and Geophysics, 2023, vol. 64, no. 7, pp. 860-869. DOI: 10.2113/RGG20234537

Fedorov A.N., Permafrost landscapes: classification and mapping, Geosciences, 2019, vol. 9, no. 11, pp. 1-3. DOI: 10.3390/geosciences9110468

Fedorova O.I., Davydov V.A., Baydikov S.V., Gorshkov V.Y., Application of geoelectrical monitoring to the study of soil dams, Geojekologija. Inzhenernaja geologija. Gidrogeologija. Geokriologija (Geoecology. Engineering geology. Hydrogeology. Geocryology), 2017, no. 1, pp. 84-92. [In Russian].

Freund R.W., Nachtigal N.M., Software for simplified Lanczos and QMR algorithms, Applied Numerical Math-ematics, 1995, vol. 19, pp. 319-341. DOI: 10.1016/0168-9274(95)00089-5

Glinskikh V., Nechaev O., Mikhaylov I., Danilovskiy K., Olenchenko V., Pulsed electromagnetic cross-well ex-ploration for monitoring permafrost and examining the processes of its geocryological changes, Geosci-ences, 2021, vol. 11, no. 2, pp. 1-15. DOI: 10.3390/geosciences11020060

Hiptmair R., Finite elements in computational electromagnetism, Acta Numerica, 2002, vol. 11, pp. 237-339. DOI: 10.1017/S0962492902000041

Kamnev Y.K., Filimonov M.Yu., Shein A.N., Vaganova N.A., Automated monitoring the temperature under buildings with pile foundations in Salekhard (preliminary results), Geography, Environment, Sustainabil-ity, 2021, vol. 14, no. 4, pp. 75-82. DOI: 10.24057/2071-9388-2021-021

Katterbauer K., Hoteit I., Sun S., Synergizing crosswell seismic and electromagnetic techniques for enhancing reservoir characterization, SPE Journal, 2016, vol. 21, no. 3, pp. 909-927. DOI: 10.2118/174559-PA

Koroleva E.S., Khairullin R.R., Babkina E.A., Slagoda E.A., Khomutov A.V., Melnikov V.P., Babkin E.M., Tikhonravova Y.V., Seasonal thawing local changes indicators for UAV-based cryolithozone mapping, Doklady Earth Sciences, 2020, vol. 491, no. 1, pp. 179-182. DOI: 10.1134/S1028334X20030095

Kuzmina E.I., Izumov S.V., Druchinin S.V., Kruglov N.A., Application of a georadar in the permafrost condi-tions at engineering-geological survey in building, Gornyi informatsionno-analiticheskii byulleten' (Min-ing Informational and Analytical Bulletin), 2012, no. 1, pp. 94-100. [In Russian].

Leiceaga G.G., Marion B., O’Sullivan K.M., Bunge G., Nielsen J.T., Fryer A., Crosswell seismic applications for improved reservoir understanding, The Leading Edge, 2015, vol. 34, no. 4, pp. 422-428. DOI: 10.1190/


Melnikov N.N., Kalashnik A.I., Zaporozhets D.V., Dyakov A.Yu., Maksimov D.A., Experience in applying georadar subsurface studies at the Russian Arctic western sector, Problemy Arktiki i Antarktiki (Arctic and Antarctic Research), 2016, no. 1, pp. 39-49. [In Russian].

Mollaret C., Hilbich C., Pellet C., Flores-Orozco A., Delaloye R., Hauck C., Mountain permafrost degradation documented through a network of permanent electrical resistivity tomography sites, Cryosphere, 2019, vol. 13, pp. 2557-2578. DOI: 10.5194/TC-13-2557-2019

Monk P., Finite Element Methods for Maxwell’s Equations, New York, Oxford University Press, 2003, 450 p.

Nair M.T., Quadrature based collocation methods for integral equations of the first kind, Advances in Computa-tional Mathematics, 2012, vol. 36, no. 2, pp. 315-329. DOI: 10.1007/s10444-011-9196-1

Nedelec J.C., A new family of mixed finite elements in R3, Numerische Mathematik, 1986, vol. 50, pp. 57-81. DOI: 10.1007/BF01389668

Nikitenko M.N., Glinskikh V.N., Gornostalev D.I., Mathematical substantiation of pulsed electromagnetic soundings for new problems of petroleum geophysics, Numerical Analysis and Applications, 2021, vol. 14, no. 2, pp. 155-166. DOI: 10.1134/S1995423921020051

Noskevich V.V., Kuzbozhev A.S., GPR investigations of soils in the permafrost zone of the gas pipeline Bo-vanenkovo–Ukhta, Geofizicheskie issledovaniya (Geophysical Research), 2017, vol. 18, no. 3, pp. 17-26. [In Russian]. DOI: 10.21455/gr2017.3-2

Oldenborger G.A., LeBlanc A.-M., Monitoring changes in unfrozen water content with electrical resistivity sur-veys in cold continuous permafrost, Geophysical Journal International, 2018, vol. 215, pp. 965-977. DOI: 10.1093/gji/ggy321

Onaca A., Ardelean A.C., Urdea P., Ardelean F., Sîrbu F., Detection of mountain permafrost by combining con-ventional geophysical methods and thermal monitoring in the Retezat Mountains, Romania, Cold Re-gions Science and Technology, 2015, vol. 119, pp. 111-123. DOI: 10.1016/j.coldregions.2015.08.001

Palamarchuk V., Holmyanskii M., Glinskaya N., Mishchenko O., Complex exploration of hydrocarbon deposits on arctic shelf with seismic, electric prospection and electrochemical methods, International Journal of Environmental and Science Education, 2016, vol. 11, no. 15, pp. 7453-7464.

Sazonov A.D., Komarov R.S., Peredera O.S., Oil product spill in Norilsk May 29, 2020: alleged reasons and pos-sible environmental impact, Ekologiya. Ekonomika. Informatika. Seriya: sistemnyi analiz i modelirovanie ekonomicheskikh i ekologicheskikh sistem (Ecology. Economy. Informatics. System analysis and math-ematical modeling of ecological and economic systems), 2020, vol. 1, no. 5, pp. 173-177. [In Russian]. DOI: 10.23885/2500-395X-2020-1-5-173-177

Shesternev D.M., Neradovskiy L.G., Litovko A.V., Electromagnetic induction surveys for thermal monitoring of permafrost under the Amur federal road (Chita to Khabarovsk), Earth’s Cryosphere, 2016, vol. 20, no. 2, pp. 87-95.

Smith M.W., Riseborough D.W., Permafrost monitoring and detection of climate change, Permafrost and Peri-glacial Processes, 1996, vol. 7, pp. 301-309. DOI: 10.1002/(SICI)1099-1530(199610)7:4<301::AID-PPP231>3.0.CO;2-R

Snegirev A.M., Velikin S.A., Istratov V.A., Kuchmin A.O., Skvortsov A.G., Frolov A.D., Geophysical monitoring in permafrost areas, in Proceedings of the 8th International Conference on Permafrost, Zürich, Switzer-land, July 21-25, Lisse, Swets & Zeitlinger, 2003, pp. 1079-1084.

Streletskiy D.A., Suter L.J., Shiklomanov N.I., Porfiriev B.N., Eliseev D.O., Assessment of climate change im-pacts on buildings, structures and infrastructure in the Russian regions on permafrost, Environmental Re-search Letters, 2019, vol. 14, pp. 1-15. DOI: 10.1088/1748-9326/aaf5e6

Vasiliev A.A., Gravis A.G., Gubarkov A.A., Drozdov D.S., Korostelev Yu.V., Malkova G.V., Oblogov G.E., Ponomareva O.E., Sadurtdinov M.R., Streletskaya I.D., Streletskiy D.A., Ustinova E.V., Shirokov R.S., Permafrost degradation: results of the long-term geocryological monitoring in the western sector of Rus-sian Arctic, Earth’s Cryosphere, 2020, vol. 24, no. 2, pp. 14-26. DOI: 10.21782/EC2541-9994-2020-2(14-26)

Watugala G.K., Sumudu transform: a new integral transform to solve differential equations and control engi-neering problems, International Journal of Mathematical Education in Science and Technology, 1993, vol. 24, no. 1, pp. 35-43. DOI: 10.1080/0020739930240105

Webb J.P., Hierarchal vector basis functions of arbitrary order for triangular and tetrahedral finite elements, IEEE Transactions on Antennas and Propagation, 1999, vol. 47, no. 8, pp. 1244-1253.

Wu Z., Zhao L., Liu L., Zhu R., Gao Z., Qiao Y., Tian L., Zhou H., Xie M., Surface-deformation monitoring in the permafrost regions over the Tibetan Plateau, using Sentinel-1 data, Sciences in Cold and Arid Re-gions, 2018, vol. 10, no. 2, pp. 114-125. DOI: 10.3724/SP.J.1226.2018.00114

Zaplavnova A.A., Olenchenko V.V., Dergach P.A., Fedin K.V., Osipova P.S., Shein A.N., Approbation of seismic and electrical geophysical techniques complex for solving the permafrost monitoring problems on the pile-foundation building, Geofizicheskie tekhnologii (Geophysical Technologies), 2022, no. 3, pp. 46-63. [In Russian]. DOI: 10.18303/2619-1563-2022-3-49

Zhang Y., Vossepoel F.C., Hoteit I., Efficient assimilation of crosswell electromagnetic data using an ensemble-based history-matching framework, SPE Journal, 2020, vol. 25, no. 1, pp. 119-138.

Zhang Z., Wang M., Wu Z., Liu X., Permafrost deformation monitoring along the Qinghai-Tibet Plateau engi-neering corridor using InSAR observations with multi-sensor SAR datasets from 1997–2018, Sensors, 2019, vol. 19, no. 23, pp. 1-23. DOI: 10.3390/s19235306