Geophysical research: article

V.A. Martines-Bedenko 1 V.A. Pilipenko 1,2 K. Shiokawa 3 V.A. Kasimova 4
1 Schmidt Institute of Physics of the Earth, Russian Academy of Sciences 2 Geophysical Center, Russian Academy of Sciences 3 Institute for Space-Earth Environmental Research, Nagoya University 4 Kamchatka Branch of Geophysical Survey, Russian Academy of Sciences, Petropavlovsk-Kamchatsky
Journal: Geophysical research
Tome: 24
Number: 2
Year: 2023
Pages: 5-24
UDK: 550.344
DOI: 10.21455/gr2023.2-1
Full text
Keywords: earthquakes, electromagnetic signals, earthquake precursors, thunderstorms, magnetic impulses, Schumann resonantor
Аnnotation: Numerous publications have appeared in the literature describing a new seismo-electromagnetic effect – the appearance of magnetic pulses with a duration of 1–40 s, which are detected at distances up to ten thousand km several minutes before earthquakes of even low magnitude. An assumption was made about the universality of the processes of impulse precursor generation and the fundamental possibility of a short-term (several minutes) warning of an approaching earthquake. In the presented article, the possibility of the appear- ance of ultra-low-frequency pulses that precede seismic events with magnitudes M>5.0, according to the data of a network of induction magnetometers in the Far East, is investigated. In the records of these highly sensitive magnetometers, impulse disturbances are constantly encountered, some of which are observed synchronously at several stations, which eliminates the influence of local noise. The spectral maximum of about 7–8 Hz of the oscillatory structure, which manifests itself in many pulses, corresponds to the fundamental frequency of the Schumann resonator. A comparison of magnetic observations with data from the WWLLN (World Wide Lightning Location Network) showed that some of the pulses were caused by lightning discharges in the 650 km vicinity of magnetic station. Despite the fact that some of the impulses are observed immediately before earth- quakes, it is impossible to speak with confidence about their connection with seismic activity. The calculation of the number of impulses in the 5-min interval before and after the seismic shock shows that they are randomly distributed relative to the moment of the earthquake. Apparently, the pulses are predominantly due to the iono-spheric response to a far lightning discharge.
Bibliography: Belov S.V., Migunov N.I., Sobolev G.A., Magnetic effect of strong earthquakes in Kamchatka, Geomagnetizm i aeronomiya (Geomagnetism and aeronomy), 1974, vol. 14, no. 3, pp. 380-382. [In Russian].

Bleier T., Dunson C., Maniscalco M., Bryant N., Bambery R., Freund F., Investigation of ULF magnetic pulsa- tions, air conductivity changes, and infrared signatures associated with the 30 October Alum Rock M5.4 earthquake, Nat. Hazards Earth Syst. Sci., 2009, vol. 9, pp. 585-603. doi: 10.5194/nhess-9-585-2009

Bleier T., Dunson C., Alvarez C., Freund F., Dahlgren R., Correlation of pre-earthquake electromagnetic signals with laboratory and field rock experiments, Nat. Hazards Earth Syst. Sci., 2010, vol. 10, pp. 1965-1975. doi: 10.5194/nhess-10-1965-2010

Bortnik J., Bleier T.E., Dunson C., Freund F., Estimating the seismotelluric current required for observable elec- tromagnetic ground signals, Annales Geophysicae, 2010, vol. 28, pp. 1615-1624.

Dovbnya B.V., On the effects of earthquakes in geomagnetic pulsations and their possible nature, Geofizicheskiy zhurnal (Geophysical Journal), 2011, vol. 33, no. 1, pp. 72-79. [In Russian].

Dovbnya B.V., Electromagnetic precursors of earthquakes and their repeatability, Geofizicheskiy zhurnal (Geo- physical Journal), 2014, vol. 36, no. 3, pp. 160-165. [In Russian]. doi: 10.24028/gzh.0203-3100.v36i3.


Dovbnya B.V., On the results of remote observation of pulsed ultra-low-frequency electromagnetic signals de- tectable minutes before an earthquake, Zhizn' Zemli (Life of the Earth), 2021, vol. 43, no. 3, pp. 304-313. [In Russian]. DOI: 10.29003/m2435.0514-7468.2020_43_3/304-313

Dovbnya B.V., Pashinin A.Yu., Rakhmatulin R.A., Short-term electromagnetic precursors of earthquakes, Geo- dinamika i tektonofizika (Geodynamics and tectonophysics), 2019, vol. 10, pp. 731-740. [In Russian]. doi: 10.5800/GT-2019-10-3-0438

Dovbnya B.V., Zotov O.D., Mostryukov A.O., Schepetnov R.V., Electromagnetic signals close in time to earth- quakes, Physics of the Solid Earth, 2006, vol. 42, no. 8, pp. 684-689.

Dovbnya B.V., Zotov О.D., Schepetnov R.V., The connection of ULF electromagnetic waves with earthquakes and antropogenic impacts, Geofizicheskie issledovanija (Geophysical Research), 2008, vol. 9, no. 4, pp. 69-80. [In Russian].

Fedorov E., Mazur N., Pilipenko V., Baddeley L., Modeling the high-latitude ground response to the excitationof the ionospheric MHD modes by atmospheric electric discharge, Journal of Geophysical Research: Space Physics, 2016, vol. 121, pp. 11282-11301. doi: 10.1002/2016JA023354

Freund F.T., Heraud J.A., Centa V.A., Scoville J., Mechanism of unipolar electromagnetic pulses emitted from the hypocenters of impending earthquakes, Eur. Phys. J. Spec. Top., 2021, vol. 230, pp. 47-65. https://

Gokhberg M.B., Krylov S.M., Levshenko V.T., Electromagnetic field of the earthquake source, Doklad AN SSSR

(Reports Academy of Sciences oft he USSR), 1989, vol. 308, no. 1, pp. 62-65. [In Russian].

Goshdzhanov M.B., Mukhanov M.B., Pilipenko V.A., Impulse disturbances of the ionosphere caused by thun- derstorm and seismic activity, Geomagnetizm i ajeronomija (Geomagnetism and aeronomy), 1991, vol. 31, pp. 1064-1069. [In Russian].

Guglielmi A.V., Levshenko V.T., Electromagnetic signals of earthquakes, Fizika Zemli (Izvestija, Physics of the Solid Earth), 1994, no. 5, pp. 65-70. [In Russian].

Guglielmi A.V., Levshenko V.T., Electromagnetic pulse from the source of an earthquake, Doklady RAN (Re- ports of the Russian Academy of Sciences), 1996, vol. 349, no. 5, pp. 676-678. [In Russian].

Guglielmi A.V., Levshenko V.T., Electromagnetic signals from the source of an earthquake, Fizika Zemli (Izves- tija, Physics of the Solid Earth), 1997, no. 9, pp. 22-30. [In Russian].

Harrison R.G., Aplin K.L., Rycroft M.J., Atmospheric electricity coupling between earthquake regions and the ionosphere, J. Atmospheric and Solar-Terrestrial Physics, 2010, vol. 72, pp. 376-381. 10.1016/j.jastp.2009.12.004

Hattori K., ULF Geomagnetic changes associated with large earthquakes, Terrestrial, Atmospheric and Oceanic Sciences, 2004, vol. 15, no. 3, pp. 329-360.

Hayakawa M., Molchanov O.A., Seismo Electromagnetics: Lithosphere–Atmosphere–Ionosphere Coupling, To- kyo, Terra Scientific Publishing, 2002, 477 p.

Hayakawa M., Schekotov A., Potirakis S.M., Eftaxias K., Li Q., Asano T., Earthquake Prediction Studies: Seis- mo Electromagnetics, Tokyo, Terra Scientific Publishing, 2013, 168 p.

Hayakawa M., Yamauchi H., Ohtani N., Ohta M., Tosa S., Asano T., Schekotov A., Izutsu J., Potirakis S.M., Ef- taxias K., Electromagnetic phenomena associated with earthquakes, Trivandrum, India, Transworld Re- search Network, 2009, 279 p.

Iyemori T., Kamei T., Tanaka Y., Takeda M., Hashimoto T., Araki T., Okamoto T., Watanabe K., Sumitom N., Oshiman N., Co-seismic geomagnetic variations observed at the 1995 Hyogoken-Nanbu earthquake, J. Geomag. Geoelectr., 1996, vol. 48, pp. 1059-1070.

Kappler K., A data variance technique for automated despiking of magnetotelluric data with a remote reference,

Geophys. Prospect, 2012, vol. 60, pp. 179-191.

Kappler K.N., Schneider D.D., MacLean L.S., Bleier T.E., Lemon J.J., Analgorithmic framework for investigat- ing the temporal relationship of magnetic field pulses and earthquakes applied to California, Computers and Geosciences, 2019, vol. 133, 104317.

Kosterin N.A., Pilipenko V.A., Dmitriev E.M., On global ultra-low-frequency electromagnetic signals before earthquakes, Geofizicheskie issledovanija (Geophysical Research), 2015, vol. 16, no. 1, pp. 24-34. [In Russian].

Lockner D.A., Johnston M.J.S., Byerlee J., A Mechanism to explain the generation of earthquake lights, Nature, 1983, vol. 302, pp. 28-33.

Malyshkov Yu.P., Dzhumabaev K.B., Forecasting earthquakes based on the parameters of the natural pulsed electromagnetic field of the Earth, Vulkanologija i sejsmologija (Vulcanology and Seismology), 1987, no. 1, pp. 97-103. [In Russian].

Marchuk R.A., Potapov A.S., Mishin V.V., Synchronous Globally Observable Ultrashort-Period Pulses, Solar- terrestrial physics, 2022, vol. 8, no. 2, pp. 47-55. DOI: 10.12737/stp-82202207

Masci F., Thomas J.N., Are there new findings in the search for ULF magnetic precursors to earthquakes?,

Journal of Geophysical Research: Space Physics, 2015, vol. 120, pp. 10289-10304.

Mazur N.G., Fedorov E.N., Pilipenko V.A., Vakhnina V.V., ULF electromagnetic field in the upper ionosphere excited by lightning, Journal of Geophysical Research: Space Physics, 2018, vol. 123, pp. 6692-6702. doi: 10.1029/2018JA025622

Molchanov O.A., Kopytenko Yu.A., Voronov P.M., Kopytenko E.A., Matiashvili T.G., Fraser-Smith A.C., Ber- nardy A., Results of ULF magnetic field measurements near the epicenters of the Spitak (MS=6.9) and the Loma-Prieta (MS=7.1) earthuakes: Comparative analysis, Geophysical Research Letters, 1992, vol. 19, pp. 1495-1498.

Nickolaenko A.P., Hayakawa M., Resonances in the Earth-ionosphere cavity, Dordrecht, Boston, London, Klu- wer Academic Publishers, 2002, 391 p.

Park S.K., Johnston M.J.S., Madden T.R., Morgan F.D., Morrison H.F., Electromagnetic precursors to earth- quakes in the ULF band – A Review of observations and mechanisms, Reviews of Geophysics, 1993, vol. 31, pp. 117-132.

Pulinets S., Davidenko D., Ionospheric precursors of earthquakes and Global Electric Circuit, Adv. Space Res., 2014, vol. 53, pp. 709-723.

Schekotov A., Molchanov O., Hattori K., Fedorov E., Gladyshev V.A., Belyaev G.G., Chebrov V., Sinitsin V., Gordeev E., Hayakawa M., Seismo-ionospheric depression of the ULF geomagnetic fluctuations at Kam- chatka and Japan, Physics and Chemistry of the Earth, 2006, vol. 31, pp. 313-318.

Schekotov A., Chebrov D., Hayakawa M., Belyaev G., Berseneva N., Short-term earthquake prediction in Kam- chatka using low-frequency magnetic fields, Natural Hazards, 2020, vol. 100, pp. 735-755. 10.1007/s11069-019-03839-2

Shiokawa K., Katoh Y., Hamaguchi Y., Ymamoto Y., Adachi T., Ozaki M., Oyama Sh., Nose M., Na- gatsuma T., Tanaka Y., Otsuka Y., Miyoshi Y., Kataoka R., Takagi Y., Takeshita Y., Shinbori A., Ku- rita S., Hori T., Nishitani N., Shinohara I., Tsuchiya F., Obana Y., Suzuki S., Takahashi N., Seki K., Ka- dokura A., Hosokawa K., Ogawa Y., Connors M., Ruohoniemi J.M., Engebretson M., Turunen E., Ulich T., Manninen J., Raita T., Kero A., Oksanen A., Back M., Kauristie K., Mattanen J., Baishev D., Kurkin V., Oinats A., Pashinin A., Vasilyev R., Rakhmatulin R., Bristow W., Karjala M., Ground-based instruments of the PWING project to investigate dynamics of the inner magnetosphere at subauroral lati- tudes as a part of the ERG-ground coordinated observation network, Earth, Planets and Space, 2017, vol. 69, pp. 1-21. doi: 10.1186/s40623-017-0745-9

Surkov V.V., Pilipenko V.A., Magnetic effects due to earthquakes and underground explosions: a review, An- nals of Geophysics, 1997, vol. 40, no 2, pp. 227-239. doi:

Surkov V.V., Pilipenko V.A., Sinha A.K., Possible mechanisms of co-seismic electromagnetic effect, Acta Geo- daetica et Geophysica, 2018, vol. 53, pp. 157-170. doi: 10.1007/s40328-018-0211-6

Thomas J.N., Love J.J., Johnston M.J., On the reported magnetic precursor of the 1989 Loma Prieta earth- quake, Physics of the Earth and Planetary Interiors, 2009, vol. 173, pp. 207-215. doi: 10.1016/ j.pepi.2008.11.014

Tsutsui M., Identification of earthquake epicenter from measurements of electromagnetic pulses in the Earth,

Geophysical Research Letters, 2005, vol. 32, L20303. doi: 10.1029/2005GL023691

Wright J.R., Possible quake-related, pre-seismic impulse snear 10 and 15 Hz that were notrecorded by a 1 Hz seismometer, New Conceptsin Global Tectonics, 2021, vol. 9, no. 2, 10 p.

Yagova N.V., Sinha A.K., Pilipenko V.A., Fedorov E.N., Holzworth R., Vichare G., ULF electromagnetic noise from regional lightning activity: Model and observations, J. Atmospheric Solar-Terrestrial Physics, 2019, vol. 182, pp. 223-228. doi: 10.1016/j.jastp.2018.12.005