Geophysical research: article

Electromagnetic permeability forecast beyond boreholes
V.V. Spichak
O.K. Zakharova
Geoelectromagnetic Research Centre of Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, Moscow, Russia
Journal: Geophysical research
Tome: 23
Number: 2
Year: 2022
Pages: 18-38
UDK: 550.837+550.832.7+550.822.7+553.048+539.217.1
DOI: 10.21455/gr2022.2-2
Full text
Keywords: permeability, prediction, electrical conductivity, fracturing, borehole, artificial neural network
Аnnotation: The results of the conducted simulation studies indicate that electrical conductivity of rocks could be considered as a good proxy parameter for permeability forecasting both in the boreholes and in the space between them. It is shown that the accuracy of the neural network permeability forecasting from results of the electromagnetic sounding significantly depends on the ratio of the borehole and target depths. In particular, the relative accuracy of the permeability forecast in depths two times exceeding the well depth could range between 2.5 and 7 % depending on rock fracturing. At the same time, the relative error of the averaged permeability forecast could be around 1–2 % for the same depth ratio. A two-dimensional permeability model of the Soultz-sous-Forêts geothermal site (France) is built from the inversion of magnetotelluric sounding results up to the depth of 5 km. Its analysis enabled to detect permeable fracture zones perspective for exploration drilling.
Bibliography: Aminian K., Ameri S., Application of artificial neural networks for reservoir characterization with limited data, J. Pet. Sci. Eng., 2005, vol. 49, no. 3-4, pp. 212-222.

Bear J., Dynamics of Fluids in Porous Media, New York: Elsevier, 1972, 764 p.

Beard D.C., Weyl P.K., Influence of texture on porosity and permeability of unconsolidated sand, AAPG Bull., 1973, vol. 57, pp. 349-369.

Bhatt A., Helle H.B., Committee neural networks for porosity and permeability prediction from well logs, Geophys. Prospect., 2002, vol. 50, pp. 645-660.

Brace W.F., Walsh J.B., Frangos W.T., Permeability of Granite under High Pressure, J. Geophys. Res., 1968, vol. 72, no. 6, pp. 2225-2236.

Da Rocha H.O., Da Costa J.L.S., Carrasquilla A.A.G., Permeability estimation and analysis of fracture networks using resistivity logs in an offshore Aptian carbonate reservoir pre-salt, in the Southeastern Santos Basin, J. Appl. Geophys., 2021, vol. 184, pp. 104241. DOI:

Dezayes C., Genter A., Hooijkaas G., Deep-seated geology and fracture system of the EGS Soultz reservoir (France) based on recent 5km depth boreholes, Proc. World Geothermal Congress, Antalya, Turkey, 2005, pp. 24-29.

Dezayes C., Genter A., Valley B., Structure of the low permeable naturally fractured geothermal reservoir at Soultz, Comptes Rendus Géoscience, 2010, vol. 343, no. 7-8, pp. 517-530.

Díaz-Curiel J., Biosca B., Miguel M.J., Geophysical Estimation of Permeability in Sedimentary Media with Porosities from 0 to 50 %, Oil & Gas Science and Technology – Rev. IFP Energies Nouvelles, 2016, vol. 71, pp. 27-44.

Evans K.F., Kohl T., Hopkirk J., Rybach L., Studies of the Nature of Non-linear Impedance to Flow within the Fractured Granitic Reservoir at the European Hot Dry Rock Project site at Soultz-sous-Forets, France, ETH Zurich report-Polydynamics Engineering, Institut fur Geophysik. Zurich, Switzerland, 1996, p. 144.

Geiermann J., 2-D magnetotelluric sounding and modeling at the geothermal site Soultz-sous-Forêts, Dipl. Phys., J. Gutenberg Universitat, Mainz, Germany, 2009, 98 p.

Geiermann J., Schill E., 2-D Magnetotellurics at the geothermal site at Soultz-sous-Forêts: Resistivity distribution to about 3000 m depth, Comptes Rendus Géoscience, 2010, vol. 342, pp. 587-599.

Genter A., Castaing C., Dezayes C., Tenzer H., Traineau H., Villemin T., Comparative analysis of direct (core) and indirect (borehole imaging tools) collection of fracture data in the Hot Dry Rock Soultz reservoir (France), J. Geophys. Res.: Solid Earth, 1997, vol. 102, no. B7, pp. 15,419-15,431.

Genter A., Evans K., Cuenot N., Fritsch D., Sanjuan B., Contribution of the exploration of deep crystalline fractured reservoir of Soultz to the knowledge of enhanced geothermal systems (EGS), Comptes Rendus Géoscience, 2010, vol. 342, pp. 502-516.

Geraud Y., Rosener M., Surma F., Place J., Le Garzic E., Diraison M., Physical properties of fault zones within a granite body: Example of the Soultz-sous-Forêts geothermal site, Comptes Rendus Géoscience, 2010, vol. 342, pp. 566-574.

Haenel R., Legrand R., Balling N., Saxov S., Bram K., Gable R., Meunier J., Fanelli M., Rossi A., Salmone M., Taff L., Prins S., Burley A.J., Edmunds W.M., Oxburgh E.R., Richardson S.W., Wheildon J., Atlas of subsurface temperatures in the European Comminity, Hannover: Th. Schafer Druckerei GmH, 1979, 655 p.

Heap M.J., Kennedy B.M., Farquharson J.I., Ashworth J., Mayer K., Letham-Brake M., Reuschlґe T., Gilg A.H., Scheu B., Lavallґee Y., Siratovich P., Cole J., Jolly A.D., Baud P., Dingwell D.B., A multidisciplinary approach to quantify the permeability of the Whakaari/White Island volcanic hydrothermal system (Taupo Volcanic Zone, New Zealand), J. Volc. Geotherm. Res., 2017, vol. 332, pp. 88108. DOI: 10.1016/j.jvolgeores.2016.12.004

Helle H.B., Bhatt A., Ursin B., Porosity and permeability prediction from wireline logs using artificial neural networks: a North Sea case study, Geophys. Prospect., 2001, vol. 49, pp. 431-444.

Huang Z., Shimeld J., Williamson M., Katsube J., Permeability prediction with artificial neural network modeling in the Venture gas field, offshore eastern Canada, Geophysics, 1996, vol. 61, no. 2, pp. 422-436.

Katz A.J., Thompson A.H., Quantitative prediction of permeability in porous rock, Phys. Rev. B., 1986, vol. 34, no. 11, pp. 8179-8181. DOI: 10.1103/physrevb.34.8179

Khaikin C., Neironnye seti: polnyi kurs. 2-e izd., ispr. (Neural networks: full course. 2nd ed., rev.), Moscow: OOO “I.D. Vil'yams”, 2006, 1104 p. [In Russian].

Kobranova V.N., Petrofizika. Uchebnik dlya vuzov. Izdanie 2-e, dopolnennoe i pererabotannoe (Petrophysics. Textbook for universities. 2-nd edition supplemented and revised), Moscow: Nedra, 1986, 392 p. [In Russian].

Kushnir A.R.L., Heap M.J., Baud P., Assessing the role of fractures on the permeability of the Permo-Triassic sandstones at the Soultz-sous-Forêts (France) geothermal site, Geothermics, 2018, vol. 74, pp. 181-189.

Latt K.M.M., Giao P.H., Prediction of permeability of cement-admixed soft clay using resistivity and timedomain IP measurements, J. Appl. Geophys., 2017, vol. 137, pp. 92-103. DOI: 10.1016/j.jappgeo. 2016.12.015

Ledesert B., Hebert R., Genter A., Bartier D., Clauer N., Grall C., Fractures, hydrothermal alterations and permeability in the Soultz enhanced geothermal system, Comptes Rendus Géoscience, 2010, vol. 342, no. 7-8, pp. 607-615.

Lim J., Reservoir permeability determination using artificial neural network, J. Korean Soc. Geosyst. Eng., 2003, vol. 40, pp. 232-238.

Ma S., Morrow N.R., Relationships Between Porosity and Permeability for Porous Rocks, Proc. SCA Conference, 1996, Paper Number 9610, 12 p.

Manning C.E., Ingebritsen S.E., Permeability of the continental crust: implications of geothermal data and metamorphic systems, Rev. Geophys., 1999, vol. 37, no. 1, pp. 127-150.

Place J., Cox M., Naville C., Oriented 3C VSP (three component Vertical Seismic Profiling) applied to the delineation of highly dipping faults in a deep granitic basement, Proceedings of the EHDRA scientific conference, 2007, pp. 28-29.

Pribnow D., Engelking U., Schellschmidt R., Temperature prediction for the HDR Project at Soutz-sous-Forêts, GGA tech. rpt. N 115869, 1997, 10 p.

Pribnow D., Schellschmidt R., Thermal tracking of upper crustal fluid flow in the Rhine graben, Geophys. Res. Lett., 2000, vol. 27, no. 13, pp. 1957-1960.

Rosener M., Etude petrophysique et modelisation des transferts thermiques entre roche et fluide dans le contexte geothermique de Soultz-sous-Forêts, Ph. D. dissertation, These Universite Louis Pasteur Strasbourg, France, 2007. 107 p.

Sardini P., Ledesert B., Touchard G., Quantification of microscopic porous networks by image analysis and measurements of permeability in the Soultz-sous-Forets granite (Alsace, France), in Fluid Flow and Transport in Rocks, Springer: Dordrecht, 1997, pp. 171-189.

Sausse J., Dezayes, C., Dorbath L., Genter A., Place J., 3D model of fracture zones at Soultz-sous-Forêts based on geological data, image logs, induced microseismicity and vertical seismic profiles, Comptes Rendus Geoscience, 2010, vol. 342, pp. 531-545.

Sausse J., Fourar M., Genter A., Permeability and alteration within the Soultz granite inferred from geophysical and flow log analysis, Geothermics, 2006, vol. 35, no. 5-6, pp. 544-560.

Schill E., Geiermann J., Kümmritz J., 2-D magnetotellurics and gravity at the geothermal site at Soultz-sous-Forêts, Proc. World Geothermal Congress, Bali, Indonesia, 2010, pp. 25-29.

Shmonov V.M., Vitovtova V.N., Pronitsaemost' porod i plotnost' flyuidov v vysokotemperaturnykh geokhimicheskikh protsessakh (eksperimental'nye issledovaniya) (Rock Permeability and Fluid Density in High-Temperature Geochemical Processes (Experimental Studies)), Moscow: Nauchnii mir, 2017, 296 p. [In Russian].

Spichak V.V., Electromagnetic sounding for geothermal exploration: new horizons, Proc. Workshop to Promote a Collaborative Initiative to Develop Higher Enthalpy Geothermal Systems in the USA, San-Bernardino, California, 2013.

Spichak V.V., Reduce geothermal exploration drilling costs: pourquoi pas?! Proc. D-GEO-D Conference. Paris, France, 2014.

Spichak V.V., Application of electromagnetic methods for searching, prospecting and monitoring of the hydrocarbon deposits, Geofizika (Geeophysics), 2017, no. 6, pp. 33-44. [In Russian].

Spichak V.V., Elektromagnitnaya tomografiya zemnykh nedr (Electromagnetic tomography of the Earth’s interior), Moscow: Nauchnii mir, 2019, 374 p. [In Russian].

Spichak V.V., Geiermann J., Zakharova O., Calcagno P., Genter A., Schill E., Estimating deep temperatures in the Soultz-sous-Forêts geothermal area (France) from magnetotelluric data, Near Surface Geophysics, 2015, vol. 13, no. 4, pp. 397-408.

Spichak V.V., Zakharova O.K., Elektromagnitnii geotermometr (Electromagnetic geothermometer), Moscow, Nauchnii mir, 2013, 172 p. [In Russian].

Spichak V.V., Zakharova O.K., Porosity forecast at depths below well bootomholes from the electrormagnetic sounding data, Geofizika (Geeophysics), 2015, no. 6, pp. 43-49. [In Russian].

Surma F., Geraud Y., Porosity and Thermal Conductivity of the Soultz-sous-Forêts Granite, Pure Appl. Geophys., 2003, vol. 160, pp. 1125-1136.

Urang J.G., Ebong E.D., Akpan A.E., Akaerue E.I., A new approach for porosity and permeability prediction from well logs using artificial neural network and curve fitting techniques: A case study of Niger Delta, Nigeria, J. Appl. Geophys., 2020, vol. 183, pp. 1-14.

Verma K.A., Cheadle A.B., Routray A., Mohanty K.W., Mansinha L., Porosity and Permeability Estimation using Neural Network Approach from Well Log, Geoconvention Vision, Canada, 2012, 9 p.

Vernoux J.F., Genter A., Razin P., Vinchon C., Geological and petrophysical parameters of a deep fractured sandstone formation as applied to geothermal exploitation: EPS1 borehole, Soultz-sous-Forêts, France, BRGM Open file report, 1995, vol. 38622, 33 p.

Vidal J., Genter A., Overview of naturally permeable fractured reservoirs in the central and southern Upper Rhine Graben: Insights from geothermal wells, Geothermics, 2018, vol. 74, pp. 57-73.

Vidal J., Genter A., Chopin F., Permeable fracture zones in the hard rocks of the geothermal reservoir at Rittershoffen, France, J. Geophys. Res.: Solid Earth, 2017, vol. 122, no. 7, pp. 4864-4887.

Vidal J., Genter A., Duringer P., Schmittbuhl J., Natural Permeability in Fractured Triassic Sediments of the Upper Rhine Graben from Deep Geothermal Boreholes, Proc. World Geothermal Congress, Melbourne, Australia, 2015, pp. 1-13.

Vidal J., Genter A., Schmittbuhl J., How do permeable fractures in the Triassic sediments of Northern Alsace characterize the top of hydrothermal convective cells? Evidence from Soultz geothermal boreholes (France), Geothermal Energy, 2015, vol. 3, no. 8, 28 p. DOI: 10.1186/s40517-015-0026-4

Vuataz F.D., Brach M., Criaud A., Fouillac C., Geochemical monitoring of drilling fluids: a powerful tool to forecast and detect formation waters, SPE Formation Evaluation, 1990, pp. 177-184.

Wang B., Wang X., Chen Z., A hybrid framework for reservoir characterization using fuzzy ranking and an artificial neural network, Comput. Geosci., 2013, vol. 57, pp. 1-10.