Geophysical research: article

T.I. Menshchikova
T.V. Gudkova
Sсhmidt Institute of Physics of the Earth of the Russian Academy of Sciences, Moscow, Russia
Journal: Geophysical research
Tome: 22
Number: 4
Year: 2021
Pages: 24-42
UDK: 523.42; 550.3
DOI: 10.21455/gr2021.4-2
Full text
Keywords: gravitational field, topography, load Love numbers, rheological models, Venus
Аnnotation: The load Love numbers for different rheological models of Venus are calculated, based on a static approach for the surface load (the planetary relief) and buried anomalous density waves. The planet was modeled as an elastic, self-gravitating body with radius-dependent density, compression modulus and shear modulus. The calculations have been performed for each harmonic up to the degree and order n=70, based on the accuracy of determining the gravity field at the moment. The article considers three rheological models of Venus. A purely elastic model (model A) was analyzed first. In the second case (model B) we assume the presence of an elastic lithosphere, under which a weakened layer extending to the core was introduced, which partially lost its elastic properties. The weakening in this layer was modeled by a tenfold lower shear modulus. The thickness of the elastic lithospheric layer varied from 100 to 500 km. In the third model (model C), a gradient change in the shear modulus was set in the weakened layer under the crust – a tenfold decrease in the shear modulus value directly under the crust gradually increased to its value in the elastic model at the core boundary. On the basis of the described models, the interpretation of the anomalous external gravitational field is carried out. It is shown that the load numbers are sensitive to the rheological structure of the planet and this can be used when choosing between the rheological models of Venus. A relief map of the crust-mantle boundary was constructed, calculated under the assumption of isostatic compensation. The obtained values of the crust thickness may be slightly less than the real ones, since the component of dynamic compensation was not taken into account in the work.
Bibliography: Anderson F.S., Smrekar S.E., Global mapping of crustal and lithospheric thickness on Venus, J. Geophys. Res.: Planets, 2006, vol. 111, issue E8. DOI: 10.1029/2004JE002395

Barnett D.N., Nimmo F., McKenzie D., Elastic thickness estimates for Venus using line of sight accelerations from Magellan cycle, Icarus, 2000, vol. 146, pp. 404-419.

Basilevsky A.T., Age of rifting and associated volcanism in Atla Regio, Venus, Geophys. Res. Lett., 1993, vol. 20, no. 10, pp. 883-886. DOI: 10.1029/93GL00736

Benesova N., Cizkova H., Geoid and topography of Venus in various thermal convection models, Stud. Geophys. Geod, 2012, vol. 56, pp. 621-629.

Breuer D., Moore W.B., Dynamics and Thermal History of the Terrestrial Planets, the Moon, and Io, Planets and Moons. Treatise of Geophysics, 2007, vol. 10, pp. 299-348.

Dumoulin C., Tobie G., Verhoeven O., Rambaux N., Tidal constraints on the interior of Venus, J. Geophys. Res.: Planets, 2017, vol. 122, Issue 6, pp. 1338-1352. DOI: 10.1002/2016JE005249

Falloon T.J., Green D.H., The solidus of carbonated, fertile peridotite, Earth and Planetary Science Letters, 1989, vol. 94, no. 3-4, pp. 364-370. DOI: 10.1016/0012-821X(89)90153-2

Ghail R., Rheological and petrological implications for a stagnant lid regime on Venus, Planetary and Space Science, 2015, vol. 113-114, pp. 2-9.

Ghail R.C., Hall D., Mason P.J., Herrick R.R., Carter L.M., Williams E., VenSAR on EnVision: Taking earth observation radar to Venus, International Journal of Applied Earth Observation and Geoinformation, 2018, vol. 64, pp. 365-376.

Grimm R.E., Solomon S.C., Viscous relaxation of impact crater relief on Venus: constraints on crustal thickness and thermal gradient, J. Geophys. Res.: Solid Earth, 1988, vol. 93, issue B10, pp. 11911-11929.

Grimm R.E., The deep structure of Venusian plateau highlands, Icarus, 1994, vol. 112, no. 1, pp. 89-103.

Gudkova T.V., Zharkov V.N., Models of the internal structure of the Earth-like Venus, Solar Syst. Res., 2020, vol. 54, no. 1, pp. 20-27.

Hansen V.L., Banks B.K., Ghent R.R., Tessera terrain and crustal plateaus. Venus, Geology, 1999, vol. 27, no. 12, pp. 1071-1074. DOI: 10.1130/0091-7613(1999)

Head J.W., Processes of crustal formation and evolution on Venus: An analysis of topography, hypsometry, and crustal thickness variations, Earth, Moon and Planets, 1990, vol. 50, pp. 25-55. DOI: 10.1007/BF00142388

Huang J., Yang A., Zhong S., Constraints of the topography, gravity and volcanism on Venusian mantle dynamics and generation of plate tectonics, Earth and Planetary Science Letters, 2013, vol. 362, pp. 207-214.

Ivanov M.A., Head J.W., Global geological map of Venus, Planetary and Space Science, 2011, vol. 59, no. 13, pp. 1559-1600.

Ito K., Kennedy G.C., An experimental study of the basalt-garnet granulite-eclogite transition, The Structure and Physical Properties of the Earth’s Crust, 1971, vol. 14, pp. 303-314.

James P., Zuber M., Phillips R., Crustal thickness and support of topography on Venus, J. Geophys. Res.: Planets, 2013, vol. 118, issue 4, pp. 859-875.

Jimenez-Dìaz A., Ruiz J., Kirby J.F., Romeo I., Tejero R., Capote R., Lithopsheric structure of Venus from gravity and topography, Icarus, 2005, vol. 260, pp. 215-231.

Kiefer W.S., Hager B.H., Mantle downwelling and crustal convergence: A model for Ishtar Terra, Venus, J. Geophys. Res.: Planets, 1991, vol. 96, issue E4, pp. 20967-20980.

Kiefer W.S., Hager B.H., Geoid anomalies and dynamic topography from convection in cylindrical geometry: Applications to mantle plumes on Earth and Venus, Geophysical Journal International, 1992, vol. 108, no. 1, pp. 198-214.

Kiefer W.S., Richards M.A., Hager B.H., Bills B.G., A dynamic model of Venus gravity field, Geophysical Research Letters, 1986, vol. 13, no. 1, pp. 14-17.

Komjathy A., Didion A., Sutin B., Nakazono B., Karp A., Wallace M., Lantoine G., Krishnamoorthy S., Rud M., Cutts J., Makela J., Grawe M., Lognonne P., Kenda B., Drilleau M., Helbert J., Remote sensing of seismic activity on Venus using a small spacecraft initial modeling results, 49th Lunar and Planetary Science Conference, 2018, no. 2083, id.1731.

Konopliv A.S., Sjogren W.L., Venus spherical harmonic gravity model to degree and order 60, Icarus, 1994, vol. 12, no. 1, pp. 42-54. DOI: 10.1006/icar.1994.1169

Konopliv A.S., Banerdt W.B., Sjogren W.L., Venus gravity: 180th degree and order model, Icarus, 1999, vol. 139, no. 1, pp. 3-18.

Kremic T., Ghail R., Gilmore M., Hunter G., Kiefer W., Limaye S., Pauken M., Tolbert C., Wilson C., Long-duration Venus lander for seismic and atmospheric science, Planetary and Space Science, 2020, vol. 190, pp. 104961.

Kucinskas A.B., Turcotte D.L., Isostatic compensation of equatorial highlands on Venus, Icarus, 1994, vol. 112, no. 1, pp.104-116.

Marchenkov K.I., Lyubimov V.M., Zharkov V.N., Calculation of load factors for deeply buried density anomalies, Doklady Earth Science Sections, 1984, vol. 279, pp. 14-16.

Marchenkov K.I., Zharkov V.N., Stresses in the Venus crust and the topography of the mantle boundary, Sol. Astron. Lett., 1989, vol. 16, no. 1, pp. 77-81.

McKenzie D., The relationship between topography and gravity on Earth and Venus, Icarus, 1994, vol. 112, no. 1, pp. 55-88.

Menshchikova T.I., Gudkova T.V., Zharkov V.N., Analysis of the topography and gravity data for the Earth-like Venus, Solar Syst. Res., 2021, vol. 55, no. 1, pp. 11-19.

Moresi L., Parsons B., Interpreting gravity, geoid, and topography for convection with temperature dependent viscosity: Application to surface features on Venus, J. Geophys. Res.: Planets., 1995, vol. 100, Issue E10, pp. 21155-21171.

Moore W.B., Schubert G., Lithospheric thickness and mantle lithosphere density contrast beneath Beta Regio, Venus, Geophys. Res. Lett., 1995, vol. 22, no. 4, pp. 429-432.

Moore W.B., Schubert G., Venusian crustal and lithospheric properties from nonlinear regression of highland geoid and topography, Icarus, 1997, vol. 128, no. 2, pp. 415-428.

Morgan P., Phillips R.J., Hot spot heat transfer: Its application to Venus and implications to Venus and Earth, J. Geophys. Res.: Solid Earth, 1983, vol. 88, Issue B10, pp. 8145-8349.

Nimmo F., McKenzie D., Modelling plume-related uplift, gravity and melting on Venus, Earth Planet Sci. Lett., 1996, vol. 145, no. 1-4, pp. 109-123.

Nimmo F., McKenzie D., Volcanism and tectonics on Venus, Annu. Rev. Earth Planet Sci., 1998, vol. 26, pp. 23-51.

O’Rourke J.G., Korenaga J., Thermal evolution of Venus with argon degassing, Icarus, 2015, vol. 260, pp. 128-140.

Orth C., Solomatov V., The isostatic stagnant lid approximation and global variations in the Venusian lithosphere, Geochem. Geophys. Geosyst., 2011, vol. 12, issue 7.

Orth C.P., Solomatov V.S., Constraints on the Venusian crustal thickness variations in the isostatic stagnant lid approximation, Geochem. Geophys. Geosyst, 2012, vol. 13, issue 11. doi: 10.1029/2012GC004377

Parmentier E.M., Hess P.C., Chemical differentiation of a convecting planetary interior: Consequences for a one plate planet such as Venus, Geophys. Res. Lett., 1992, vol. 19, no. 20, pp. 2015-2018.

Pauer M., Fleming K., Cadek O., Modeling thedynamic component of the geoid and topography of Venus, J. Geophys. Res.: Planets, 2006, vol.111, issue E11. doi: 10.1029/2005JE002511

Phillips R.J., Estimating lithospheric properties of Atla Regio, Venus, Icarus, 1994, vol. 112, no. 1, pp. 147-170.

Phillips R.J., Lambeck K., Gravity fields of the terrestrial planets: long-wavelength anomalies and tectonics, Reviews of Geophysics, 1980, vol. 18, no. 1, pp. 27-76.

Phillips R.J., Kaula W.M., McGill G.E., Malin M.C., Tectonics and evolution of Venus, Science, 1981, vol. 212, no. 4497, pp. 879-887.

Phillips R.J., Johnson C.L., Mackwell S.J., Morgan P., Sandwell D.T., Zuber M.T., Lithospheric mechanics and dynamics of Venus, in Venus II, Tucson: Univ. Ariz. Press, 1997, pp. 1163-1204.

Price M., Suppe J., Mean age of rifting and volcanism on Venus deduced from impact crater densities, Nature, 1994, vol. 372, pp. 756-759.

Rappaport N.J., Konopliv A.S., Kucinskas A.B., Animproved 360 degree and order model of Venus topography, Icarus, 1999, vol. 139, no. 1, pp. 19-31.

Reese C.C., Solomatov V.S., Orth C.P., Mechanisms for cessation of magmatic resurfacing on Venus, J. Geophys. Res.: Planets, 2007, vol. 112, issue E4. doi: 10.1029/2006JE002782

Ringwood A.E., Some aspects of the minor element chemistry of lunar mare basalts, The Moon, 1975, vol.12, pp. 127-157.

Rolf T., Steinberger B., Sruthi U., Werner S.C., Inferences on the mantle viscosity structure and the postoverturn evolutionary state of Venus, Icarus, 2018, vol. 313, pp. 107-123.

Rosenblatt P., Dumoulin C., Marty J.C., Genova A., Determination of Venus’ interior structure with EnVision, Remote Sens., 2021, vol. 13, no. 9, pp. 1624. Doi: 10.3390/rs13091624

Shalygin E.V., Markiewicz W.J., Basilevsky A.T., Titov D.V., Ignatiev N.I., Head J.W., Active volcanism on Venus in the Ganiki Chasma rift zone, Geophys. Res. Lett., 2015, vol. 42, issue 12, pp. 4762-4769. doi: 10.1002/2015GL064088

Simons M., Hager B.H., Solomon S.C., Global variations in geoid/topography admittances of Venus, Science, 1994, vol. 256, pp. 798-803.

Simons M., Solomon S.C., Hager B.H., Localization of gravity and topography: Constraints on the tectonics and mantle dynamics of Venus, Geophys. J. Int., 1997, vol. 131, issue 1, pp. 24-44.

Smrekar S.E., Evidence for active hotspots on Venus from analysis of Magellan gravity data, Icarus, 1994, vol. 112, no. 1, pp. 2-26.

Smrekar S.E., Stofan E.R., Mueller N., Treiman A., Elkins-Tanton L., Helbert J., Piccioni G., Drossart P., Recent hotspot volcanism on Venus from VIRTIS emissivity data, Science, 2010, vol. 328, no. 5978, pp. 605-608.

Smrekar S., Sotin C., Constraints on mantle plumes on Venus: implications for volatile history, Icarus, 2012, vol. 217, no. 2, pp. 510-523.

Smrekar S.E., Phillips R.J., Venusian highlands: Geoid to topography ratios and their implications, Earth Planet. Sci. Lett., 1991, vol. 107, no. 3-4, pp. 582-597.

Solomatov V.S., Moresi L.N., Stagnant lid convection on Venus, J. Geophys. Res. Planets, 1996, vol. 101, issue E2, pp. 4737-4753.

Solomon S.C., The geophysics of Venus, Phys. Today, 1993, vol. 46, no. 7, pp. 48-55.

Spohn T., Mantle differentiation and thermal evolution of Mars, Mercury, and Venus, Icarus, 1991, vol. 90, no. 2, pp. 222-236.

Steinberger B., Werner S., Torsvik T., Deep versus shallow origin of gravity anomalies, topography and volcanism on Earth, Venus and Mars, Icarus, 2010, vol. 207, no. 2, pp. 564-577.

Stofan E.R., Smrekar S.E., Bindschadler D.L., Senske D.A., Large topographic rises on Venus: Implications for mantle upwelling, J. Geophys. Res. Planets., 1995, vol. 100, issue E11, pp. 23317-23327. doi: 10.1029/95JE01834

Stoddard P.R., Jurdy D.M., Topographic comparisons of uplift features on Venus and Earth: Implications for Venus tectonics, Icarus, 2012, vol. 217, no. 2, pp. 524-533.

Turcotte D.L., An episodi c hypothesis for V enusian tectonics, J. Geophys. Res.: Planets, 1993, vol. 98, issue E9, pp. 17061-17068.

Vezolainen A.V., Solomatov V.S., Basilevsky A.T., Head J.W., Uplift of Beta Regio: Three-dimensional models, J. Geophys. Res.: Planets, 2004, vol. 109, issue E8. doi: 10.1029/2004JE002259

Watts A.B., Zhong S., Observations of flexure and the rheology of oceanic lithosphere, Geophys. J. Int., 2000, vol. 142, no. 3, pp. 855-875.

Wieczorek M.A., Gravity and topography of the terrestrial planets, Treatise on geophysics. Planets and Moons, 2015, vol. 10, pp. 153-193.

Xiao C., Li F., Yan J.G., Hao W.F., Harada Y., Ye M., Barriot J.P., Inversion of Venus internal structure based on geodetic data, Research in astronomy and astrophysics, 2020, vol. 20, no. 8, 15 p.

Yang A., Huang J., Wei D., Separation of dynamic and isostatic components of the Venusian gravity and topography and determination of the crustal thickness of Venus, Planetary and Space Science, 2016, vol. 129, pp. 24-31.

Zampa L.S., Tenzer R., Eshagh M., Pitonak M., Evidence of mantle upwelling / downwelling and localized subduction on Venus from the body-force vector analysis, Planetary and Space Science, 2018, vol. 157, pp. 48-62.

Zharkov V.N., Gravity field, loading coefficients, anomalous density waves and the case of long waves, Venus geology, geochemistry and Geophysics research results from the USSR, Tucson: University of Arizona Press, 1992, pp. 218-227.

Zharkov V.N., Gudkova T.V., On Parameters of the Earth-like model of Venus, Sol. Syst. Res., 2019, vol. 53, no. 1, pp. 1-4.

Zharkov V.N., Marchenkov K.I., Lyubimov V.M., The long-wave tangential stresses in the lithosphere and mantle of Venus, Astronomicheskii vestnik (Astronomical Bulletin), 1986, vol. 20, no. 3, pp. 202-211. [In Russian].

Zharkov V.N., Marchenkov K.I., The correlation of tangential stresses in the Venus lithosphere with surface structures, Astronomicheskii vestnik (Astronomical Bulletin), 1987, vol. 21, no. 2, pp. 170-175. [In Russian].

Zharkov V.N., Solomatov V.S., Models of the thermal evolution of Venus, Venus geology, geochemistry and Geophysics research results from the USSR, Tucson: University of Arizona Press, 1992, pp. 280-319.